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ABSTRACT
Quantifying the heterogeneity is an important issue in meta-analysis, and among the existing measures, the 𝐼2 statistic is most
commonly used. In this article, we first illustrate with a simple example that the 𝐼2 statistic is heavily dependent on the study
sample sizes, mainly because it is used to quantify the heterogeneity between the observed effect sizes. To reduce the influence
of sample sizes, we introduce an alternative measure that aims to directly measure the heterogeneity between the study popula-
tions involved in the meta-analysis. We further propose a new estimator, namely the 𝐼2

A statistic, to estimate the newly defined
measure of heterogeneity. For practical implementation, the exact formulas of the 𝐼2

A statistic are also derived under two com-
mon scenarios with the effect size as the mean difference (MD) or the standardized mean difference (SMD). Simulations and
real data analyses demonstrate that the 𝐼2

A statistic provides an asymptotically unbiased estimator for the absolute heterogeneity
between the study populations, and it is also independent of the study sample sizes as expected. To conclude, our newly defined
𝐼2
𝐴

statistic can be used as a supplemental measure of heterogeneity to monitor the situations where the study effect sizes are
indeed similar with little biological difference. In such scenario, the fixed-effect model can be appropriate; nevertheless, when the
sample sizes are sufficiently large, the 𝐼2 statistic may still increase to 1 and subsequently suggest the random-effects model for
meta-analysis.

1 | Introduction

Meta-analysis is a statistical technique for evidence-based prac-
tice, which aims to synthesize multiple studies and produce
a summary conclusion for the whole body of research [1]. In
the literature, there are two commonly used statistical mod-
els for meta-analysis, namely, the fixed-effect model and the
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random-effects model. Among them, the fixed-effect model
assumes that the effect sizes of different studies are all the same,
which is somewhat restrictive and may not be realistic in prac-
tice. The effect sizes often differ between the studies due to vari-
ability in study design, outcome measurement tools, risk of bias,
and the participants, interventions and outcomes studied [2], etc.
Such diversity in the effect sizes is known as the heterogeneity.
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When the heterogeneity exists, the random-effects model ought
to be applied for meta-analysis. In such scenarios, it is of great
importance to properly quantify the heterogeneity so as to explore
the generalizability of the findings from a meta-analysis.

To describe the heterogeneity in detail, we first introduce the
random-effects model for meta-analysis. Let 𝑘 ≥ 2 be the total
number of studies, and 𝑦𝑖 be the observed effect sizes from the
studies 𝑖 = 1, . . . , 𝑘. For each study with true effect size 𝜇𝑖, we
assume that 𝑦𝑖 is normally distributed with mean 𝜇𝑖 = 𝐸(𝑦𝑖|𝜇𝑖)
and variance 𝜎2

𝑦𝑖
= var(𝑦𝑖|𝜇𝑖). Moreover, to account for the hetero-

geneity between the studies, we also assume that the individual
effect sizes 𝜇𝑖 follow another normal distribution with mean 𝜇

and variance 𝜏2 > 0. Taken together, the random-effects model
for meta-analysis can be expressed as

𝑦𝑖 = 𝜇 + 𝛿𝑖 + 𝜖𝑖, 𝛿𝑖
i.i.d.∼ 𝑁(0, 𝜏2), 𝜖𝑖

ind∼ 𝑁(0, 𝜎2
𝑦𝑖
) (1)

where “i.i.d.” represents independent and identically dis-
tributed, “ind” represents independently distributed, 𝜏2 is the
between-study variance, and 𝜎2

𝑦𝑖
are the within-study variances.

In addition, the study deviations 𝛿𝑖 = 𝜇𝑖 − 𝜇 and the random
errors 𝜖𝑖 are assumed to be independent of each other. When 𝛿𝑖
are all zero, model (1) reduces to the fixed-effect model and there
is no heterogeneity between the studies.

To test the existence of heterogeneity for model (1), Cochran [3]
proposed the 𝑄 statistic as

𝑄 =
𝑘∑

𝑖=1
𝑤𝑖

(
𝑦𝑖 −

∑𝑘

𝑖=1𝑤𝑖𝑦𝑖∑𝑘

𝑖=1𝑤𝑖

)2

(2)

where 𝑤𝑖 = 1∕𝜎2
𝑦𝑖

are the inverse-variance weights. Noting that
𝜎2
𝑦𝑖

can often be estimated with high precision, it is a common
practice in meta-analysis that the within-study variances are
regarded as known. Nevertheless, when used as a measure of het-
erogeneity, it is often criticized that the value of 𝑄 will increase
with the number of studies. Another measure for heterogeneity
is to apply the between-study variance 𝜏2, yet it is known to be
specific to a particular effect metric, making it impossible to com-
pare across different meta-analyses [4]. To have a fair comparison,
Higgins and Thompson [5] and Higgins et al. [6] introduced the
𝐼2 statistic by a two-step procedure, under the assumption that
the within-study variances 𝜎2

𝑦𝑖
= 𝜎2

𝑦
are all the same. They first

defined the measure of heterogeneity between the studies as

ICCHT = 𝜏2

var(𝑦𝑖)
= 𝜏2

𝜏2 + 𝜎2
𝑦

(3)

and then proposed

𝐼2 = 𝜏2

𝜏2 + 𝜎̃2
𝑦

= max
{

𝑄 − (𝑘 − 1)
𝑄

, 0
}

(4)

to estimate the unknown ICCHT, where 𝜏2 = max{{𝑄 − (𝑘 −
1)}∕(

∑𝑘

𝑖=1𝑤𝑖 −
∑𝑘

𝑖=1𝑤
2
𝑖
∕
∑𝑘

𝑖=1𝑤𝑖), 0} is the DerSimonian-Laird
estimator [4] and 𝜎̃2

𝑦
= (𝑘 − 1)∕(

∑𝑘

𝑖=1𝑤𝑖 −
∑𝑘

𝑖=1𝑤
2
𝑖
∕
∑𝑘

𝑖=1𝑤𝑖).
When the within-study variances are all the same, 𝜎̃2

𝑦
is identical

to the common 𝜎2
𝑦
. Otherwise if they differ, Böhning et al. [7] has

showed that 𝜎̃2
𝑦

is asymptotically identical to the harmonic mean

(
∑𝑘

𝑖=1𝑤𝑖∕𝑘)−1 of the within-study variances. Moreover, the 𝐼2

statistic is also guaranteed to be within the interval [0, 1), which
is appealing in that it does not depend on the number of studies
and is irrespective of the effect metric.

Thanks to its nice properties, the 𝐼2 statistic is nowadays rou-
tinely reported in the forest plots for meta-analyses, and/or used
as a criterion for model selection between the fixed-effect model
and the random-effects model. In Google Scholar, as of January
2025, the two articles by Higgins and Thompson [5] and Hig-
gins et al. [6] have been cited more than 32,000 and 57,000 times,
respectively. Despite of its huge popularity, there were evidences
in the literature reporting the limitations of the 𝐼2 statistic. In
particular, Rücker et al. [8] found that the 𝐼2 statistic always
increases rapidly to 1 when the sample sizes are large, regard-
less of whether or not the heterogeneity between the studies is
clinically important. For other discussions on the 𝐼2 statistic as
a measure of heterogeneity, one may refer to, for example, Riley
et al. [9], IntHout et al. [10], Borenstein et al. [11], Sangnawakij
et al. [12], Holling et al. [13], and the references therein. This
motivates us to further explore the characteristics of the 𝐼2 statis-
tic as a measure of heterogeneity for meta-analysis.

To answer this question, we first present a motivating example
to demonstrate that the 𝐼2 statistic was defined to quantify the
heterogeneity between the observed effect sizes rather than that
between the study populations. In view of this, we regard the 𝐼2

statistic as a relative measure of heterogeneity. We further draw a
connection between the one-way analysis of variance (ANOVA)
and the random-effects meta-analysis, and subsequently intro-
duce an alternative measure for quantifying the heterogeneity in
the random-effects model, which is independent of study sample
sizes and can serve as an absolute measure of heterogeneity. For
details, see Section 3.2 for the defined ICCMA in formula (8). To
move forward, the statistical properties of ICCMA are also derived
that explore the distinction between our new measure and the
existing measures, together with an asymptotically unbiased esti-
mator of the unknown ICCMA based on ANOVA. Lastly and most
importantly, we also manage to provide an easy-to-implement
estimator, namely the 𝐼2

A statistic, to estimate ICCMA based
on the 𝑄 statistic, in a way similar for 𝐼2 in (4) to estimate
ICCHT.

The remainder of the article is organized as follows. In Section 2,
we give a motivating example to illustrate that ICCHT heav-
ily depends on the study sample sizes. In Section 3, by draw-
ing a close connection between ANOVA and the random-effects
meta-analysis, we introduce an alternative measure for quantify-
ing the heterogeneity between the studies, namely ICCMA, and
then provide an ANOVA-based method to estimate this mea-
sure. In Sections 4–6, we further derive the easy-to-implement
𝐼2

A statistic to estimate the new heterogeneity measure ICCMA,
using the 𝑄 statistic under three common scenarios with the raw
mean, the mean difference, or the standardized mean difference
as the effect size, respectively. While for practical implementa-
tion, real data analysis and numerical results are also presented
for each scenario. Finally, we conclude the article in Section 7 and
provide the technical details in the Appendices A–F.
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2 | A Motivating Example

In this section, we illustrate how ICCHT in (3) varies along with
the sample sizes, and so may not be able to serve as a mea-
sure of heterogeneity between the study populations. To confirm
this claim, we first consider a motivating example of three stud-
ies with data generated from normal populations 𝑁(−0.05, 1),
𝑁(0, 1), and 𝑁(0.05, 1), respectively. From the top-left panel of
Figure 1, it is evident that the three study populations are largely
overlapped. Taken the three study means as a random sample, the
between-study variance can be estimated by the sample variance
as 𝜏2 = {(−0.05 − 0)2 + (0 − 0)2 + (0.05 − 0)2}∕2 = 0.0025.

To explain why ICCHT is not a measure of heterogeneity between
the study populations, we consider two scenarios to meta-analyze
the three studies, with the population means being treated as the
effect sizes. The first scenario assumes 𝑛 = 400 patients in each
study. By taking the sample means, the sampling distributions of
the observed effect sizes are thus 𝑁(−0.05, 0.0025), 𝑁(0, 0.0025),
and 𝑁(0.05, 0.0025), respectively, yielding 𝜎2

𝑦
= 0.0025 as the

common within-study variance. Further by the definition in (3),
we have

ICCHT ≈ 0.0025
0.0025 + 0.0025

= 50%

In the second scenario, we consider 𝑛 = 4000 for each study. This
leads to the sampling distributions of the observed effect sizes as
𝑁(−0.05, 0.00025), 𝑁(0, 0.00025), and 𝑁(0.05, 0.00025), respec-
tively. Further by 𝜎2

𝑦
= 0.00025, the measure of heterogeneity is

ICCHT ≈ 0.00025
0.00025 + 0.0025

= 90.9%

Finally, for ease of comparison, we also plot the sampling distri-
butions of the observed effect sizes in Figure 1 for the two hypo-
thetical scenarios with varying study sample sizes.

The above example clearly shows that ICCHT, defined in (3)
by Higgins and Thompson (2002), measures the heterogeneity
between the observed effect sizes and thus heavily depends on
the study sample sizes. In other words, ICCHT is a relative mea-
sure of heterogeneity for meta-analysis. Consequently, as a sam-
ple estimate of ICCHT, the 𝐼2 statistic is also heavily dependent on

the sample sizes. This coincides with the observations by Rücker
et al. [8]. Specifically, in our motivating example, ICCHT increases
rapidly to about 90%when the sample sizes are 4000, even though
it is evident that the three populations are largely overlapped with
each other. To summarize, when the study sample sizes 𝑛𝑖 are
large enough, it will always yield an 𝐼2 value being close to 1.
On the other hand, compared with the population variance 1, the
differences between the three study means (−0.05, 0, 0.05) may
not be clinically important. To support this claim, we note that
the Scientific Committee of the European Food Safety Authority
have also emphasized the importance of assessing the biological
differences [14]. This hence motivates us to introduce an alterna-
tive measure that quantifies the heterogeneity between the study
populations directly, in a way to reduce the influence of sample
sizes.

3 | A New Measure of Heterogeneity and the
𝑰2

ANOVA Statistic

To further explore the characteristics of ICCHT, we also draw in
this section an interesting connection between one-way analy-
sis of variance (ANOVA) and meta-analysis. And on the basis of
that, a new measure for quantifying the heterogeneity between
the study populations will be introduced, and moreover by study-
ing its statistical properties, it is also clarified why it can add new
value to meta-analysis. Lastly for completeness, we also provide
an asymptotically unbiased estimator, namely the 𝐼2

ANOVA statis-
tic, to estimate the new measure of heterogeneity in Section 3.3.
Nevertheless, as will be seen, the 𝐼2

ANOVA statistic may not be easy
to implement for practitioners, which motivates us to further pro-
pose a much simpler and more elegant estimator in Sections 4–6
based on the 𝑄 statistic. For readers who are not familiar with
ANOVA, Section 3.3 can be skipped without affecting the subse-
quent reading.

3.1 | Connection Between ANOVA
and Meta-Analysis

To introduce the one-way ANOVA, we let 𝑦𝑖𝑗 be the 𝑗th
observation in the 𝑖th population, 𝑖 = 1, . . . , 𝑘 and 𝑗 = 1, . . . , 𝑛𝑖,

−3 −1 0 1 2 30.
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Population distributions
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0
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Sampling distributions with n=400

Effect size
−0.3 −0.1 0.1 0.2 0.3

0
5

10
15

20
25

Sampling distributions with n=4000
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FIGURE 1 | Population distributions of the three studies and the sampling distributions of the observed effect sizes. Left panel: population dis-
tributions are 𝑁(−0.05, 1) in blue, 𝑁(0, 1) in green, and 𝑁(0.05, 1) in red, respectively. Middle panel: sampling distributions are 𝑁(−0.05, 0.0025),
𝑁(0, 0.0025), and 𝑁(0.05, 0.0025), respectively. Right panel: sampling distributions are 𝑁(−0.05, 0.00025), 𝑁(0, 0.00025), and 𝑁(0.05, 0.00025), respec-
tively.
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where 𝑘 is the number of studies and 𝑛𝑖 are the study sample
sizes from each population. The random-effects ANOVA for the
observed data is then

𝑦𝑖𝑗 = 𝜇 + 𝛿𝑖 + 𝜉𝑖𝑗 , 𝛿𝑖
i.i.d.∼ 𝑁(0, 𝜏2), 𝜉𝑖𝑗

i.i.d.∼ 𝑁(0, 𝜎2) (5)

where 𝜇 is the grand mean, 𝛿𝑖 are the treatment effects, and 𝜉𝑖𝑗
are the random errors. We further assume that 𝛿𝑖 are i.i.d. normal
random variables with mean 0 and variance 𝜏2 ≥ 0, 𝜉𝑖𝑗 are i.i.d.
normal random errors with mean 0 and variance 𝜎2 > 0, and that
𝛿𝑖 and 𝜉𝑖𝑗 are independent of each other. In addition, we refer to
𝜇𝑖 = 𝜇 + 𝛿𝑖 as the individual means, 𝜏2 as the between-study vari-
ance, 𝜎2 as the common error variance for all 𝑘 populations, and
𝜏2 + 𝜎2 as the total variance of each observation.

To draw a close connection between ANOVA and meta-analysis,
we consider a hypothetical scenario in which the experimenter
first computed the sample mean and its variance for each popu-
lation, namely 𝑦𝑖 =

∑𝑛𝑖
𝑗=1𝑦𝑖𝑗∕𝑛𝑖 and 𝜎̂2

𝑦𝑖
=
∑𝑛𝑖

𝑗=1(𝑦𝑖𝑗 − 𝑦𝑖)2∕{𝑛𝑖(𝑛𝑖 −
1)} for 𝑖 = 1, . . . , 𝑘, and then reported these summary data rather
than the raw data to the public. In practice, there are reasons why
one must do so, including, for example, due to the privacy pro-
tection for which the individual patient data cannot be released.
Under such a scenario, if some researchers want to re-analyze the
experiment using only the publicly available data, it then yields a
new random-effects model as

𝑦𝑖 = 𝜇 + 𝛿𝑖 + 𝜖𝑖, 𝛿𝑖
i.i.d.∼ 𝑁(0, 𝜏2), 𝜖𝑖

ind∼ 𝑁(0, 𝜎2∕𝑛𝑖) (6)

where 𝑦𝑖 are the sample means, 𝜇 and 𝛿𝑖 are the same as
defined in model (5), and 𝜖𝑖 =

∑𝑛𝑖
𝑗=1𝜉𝑖𝑗∕𝑛𝑖 are independent ran-

dom errors with mean 0 and variance 𝜎2∕𝑛𝑖, where 𝑖 = 1, . . . , 𝑘.
Now from the point of view of meta-analysis, if we treat 𝑦𝑖 as
the reported effect sizes and 𝜎̂2

𝑦𝑖
as the within-study variances

representing 𝜎2∕𝑛𝑖, then model (6) is essentially the same as the
random-effects model in (1). This interesting connection shows
that, when the ANOVA model with raw data only releases the
summary data to the public, it will then yield a meta-analysis
model with summary data.

For ease of comparison, we also summarize some key compo-
nents in Table 1 for both the ANOVA model in (5) and the
meta-analysis model in (6). For the meta-analysis model, under
the assumption that the within-study variances, i.e., 𝜎2∕𝑛𝑖, are
all equal, Higgins and Thompson [5] interpreted the measure of
heterogeneity as the proportion of total variance that is “between
the studies”. More specifically, by the last column of Table 1, they
introduced the measure of heterogeneity for meta-analysis as in
(3), where 𝜎2

𝑦
= 𝜎2∕𝑛𝑖 is the common within-study variance for

the observed effect sizes. This clearly explains why ICCHT will be
heavily dependent on the study sample sizes. When the sample
sizes go to infinity, the within-study variances will converge to
zero so that ICCHT will increase to 1, as having been observed in
Rücker et al. [8]. This also coincides with our motivating example
in Section 2 that, when the sample size varies from 400 to 4000,
their measure of heterogeneity will increase from 50% to about
90%, regardless of whether or not the heterogeneity between the
studies is clinically important.

TABLE 1 | Connection between the ANOVA model in (5) and the
meta-analysis model in (6), where 𝑦𝑖 =

∑𝑛𝑖
𝑗=1𝑦𝑖𝑗∕𝑛𝑖 and 𝜖𝑖 =

∑𝑛𝑖
𝑗=1𝜉𝑖𝑗∕𝑛𝑖 for

𝑖 = 1, . . . , 𝑘 and 𝑗 = 1, . . . , 𝑛𝑖.

ANOVA Meta-analysis

Model 𝑦𝑖𝑗 = 𝜇 + 𝛿𝑖 + 𝜉𝑖𝑗 𝑦𝑖 = 𝜇 + 𝛿𝑖 + 𝜖𝑖

Between-study
variance

𝜏2 𝜏2

Error (or
within-study)
variance

𝜎2 𝜎2∕𝑛𝑖

Total variance var(𝑦𝑖𝑗) = 𝜏2 + 𝜎2 var(𝑦𝑖) = 𝜏2 + 𝜎2∕𝑛𝑖

For the ANOVA model, it is well known that the intraclass
correlation coefficient (ICC) is the most commonly used mea-
sure of heterogeneity [15–18], which interprets the proportion of
total variance that is “between populations”. More specifically, by
Table 1, ICC can be expressed as

ICC = 𝜏2

var(𝑦𝑖𝑗)
= 𝜏2

𝜏2 + 𝜎2 (7)

As shown in the hypothetical scenario, the ANOVA model in (5)
and the meta-analysis model in (6) are, in fact, modeling the same
populations, even though one uses the raw data and the other
uses the summary data. In the special case when the mean value
is taken as the effect size, it is known that the sample mean is
a sufficient and complete statistic for the normal mean; in other
words, the raw data and the summary data contain exactly the
same information regarding the effect size. With this insight, we
expect that the measures of heterogeneity between the study pop-
ulations for the two models should also be the same, regardless
of whether the raw data or the summary data are being used.

3.2 | An Intrinsic Measure of Heterogeneity

Inspired by the intrinsic connection between ANOVA and
meta-analysis, we now follow the same assumption as in ANOVA
that the population variances 𝑛𝑖𝜎

2
𝑦𝑖

are all equal. For ease of pre-
sentation, we also denote the common study population variance
as 𝜎2

pop. Then by following ICC in (7) for ANOVA, we propose the
following measure of heterogeneity for meta-analysis:

ICCMA = 𝜏2

var(𝑦𝑖𝑗)
= 𝜏2

𝜏2 + 𝜎2
pop

(8)

Note that the range of ICCMA is always within the interval [0, 1).
Regarding the rationale of ICCMA for meta-analysis, one may also
refer to the proposed measure in Sangnawakij et al. [12]. And as
mentioned in Section 2, a common population variance can be
a more reasonable assumption for meta-analysis compared to a
common within-study variance for all studies, in a way to mitigate
the impact caused by the study sample sizes.

To further study the properties of ICCMA and explain why it can
serve as an absolute measure of heterogeneity for meta-analysis,
we first present the three statistical properties of ICCHT as
follows.
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i Monotonicity. ICCHT is a monotonically increasing func-
tion of the ratio 𝜏2∕𝜎2

𝑦
. When the common within-study

variance 𝜎2
𝑦

is fixed, ICCHT will solely increase with the
between-study variance 𝜏2. This property was referred to as
the “dependence on the extent of heterogeneity” by Higgins
and Thompson [5].

ii Location and scale invariance. ICCHT is not affected by the
location and scale of the effect sizes. This property was
referred to as the “scale invariance” by Higgins and Thomp-
son [5].

iii Study size invariance. ICCHT is not affected by the total num-
ber of studies 𝑘. This property was referred to as the “size
invariance” by Higgins and Thompson [5].

Thanks to the above properties, the 𝐼2 statistic is nowadays
the most popular measure for quantifying the heterogeneity in
meta-analysis, compared to other existing measures including 𝑄

and 𝜏2. Nevertheless, we do wish to point out that the “size invari-
ance” in their property (iii) only represents the study size invari-
ance but not includes the sample size invariance. As shown in
the motivating example and also from the historical evidence in
the literature, ICCHT does suffer from a heavy dependence on the
study sample sizes.

While for the new measure of heterogeneity in (8), we show in
Appendix A that ICCMA shares the following four properties:

i′ Monotonicity. ICCMA is a monotonically increasing func-
tion of the ratio 𝜏2∕𝜎2

pop. When the common population
variance 𝜎2

pop is fixed, ICCMA will solely increase with the
between-study variance 𝜏2.

ii′ Location and scale invariance. ICCMA is not affected by the
location and scale of the effect sizes.

iii′ Study size invariance. ICCMA is not affected by the total
number of studies 𝑘.

iv′ Sample size invariance. ICCMA is not affected by the sample
size 𝑛𝑖 of each study.

Note that the first three properties for ICCMA are essentially the
same as those for ICCHT. While for the importance of property
(iv′), let us illustrate again using the motivating example in
Section 2. Under the assumption of a common population vari-
ance, the term 𝜎2

pop remains constant at 1 no matter how the
sample sizes vary. Further by (8), the value of ICCMA under each
scenario will always be 0.0025∕(0.0025 + 1) ≈ 0.25%, indicating
that the three study populations are indeed highly overlapped
with a small amount of heterogeneity. To conclude, it is because
of the sample size invariance in property (iv′) that distinguishes
our new ICCMA from the existing ICCHT, which also perfectly
explains why ICCMA can serve as a new measure for quantify-
ing the heterogeneity between the study populations. Due to its
sample size invariance, we regard ICCMA as an absolute measure
of heterogeneity.

3.3 | Estimation of ICCMA Based on ANOVA

In ANOVA, there has been extensive and well-established
research on the estimation of ICC. For easy reference, we have
also provided a brief review in Appendix B. Among the exist-
ing methods, it is known that the ANOVA estimator is the most
widely used thanks to its straightforwardness and effectiveness.
Inspired by this, we also propose an ANOVA-based estimator for
ICCMA in the framework of meta-analysis.

Following the random-effects ANOVA in (5), the total variance
of the observations is given by

∑𝑘

𝑖=1
∑𝑛𝑖

𝑗=1(𝑦𝑖𝑗 − 𝑦)2, which can be
divided into two components as the sum of squares between the
populations and the error sum of squares within the populations.
Based on this variance partitioning, Cochran [19] derived the
method of moments estimators of 𝜏2 and 𝜎2, and then by plugging
them into formula (7), it yields the well-known ANOVA estimator
for the unknown ICC. In parallel, following the random-effects
model for meta-analysis in (1), we first assume that 𝜎̂2

𝑦𝑖
are the

estimated within-study variance from each study, as also men-
tioned in Section 3.1. We further define the mean square between
the populations (MSB) as

MSBMA = 1
𝑘 − 1

𝑘∑
𝑖=1

{
𝑛𝑖
(
𝑦𝑖 − 𝑦

)2
}

(9)

where 𝑦 =
∑𝑘

𝑖=1(𝑛𝑖𝑦𝑖)∕
∑𝑘

𝑖=1𝑛𝑖, and the mean square within the
populations (MSW) as

MSWMA = 1∑𝑘

𝑖=1
(
𝑛𝑖 − 1

) 𝑘∑
𝑖=1

{
𝑛𝑖
(
𝑛𝑖 − 1

)
𝜎̂2
𝑦𝑖
)
}

(10)

Moreover, let

ñ = 1
𝑘 − 1

(
𝑘∑

𝑖=1
𝑛𝑖 −

𝑘∑
𝑖=1

𝑛2
𝑖
∕

𝑘∑
𝑖=1

𝑛𝑖

)
(11)

be the adjusted mean sample size [20] that accounts for the vari-
ation of the sample sizes from different studies. Then by the
same method for estimating ICC, our new estimator for ICCMA
is given as

𝐼2
ANOVA = max

{
MSBMA − MSWMA

MSBMA + (ñ − 1)MSWMA
, 0
}

(12)

Similar to the 𝐼2 statistic in (4), the maximum operation is taken
to avoid a negative estimate. For more details on the derivation of
𝐼2

ANOVA, one may refer to Appendix C.

Up to now, we have used the generic notation 𝑦𝑖 as the observed
effect size, together with its standard error 𝜎̂𝑦𝑖

and the sample
size 𝑛𝑖. Note that this is the simplest scenario, in which the effect
size is represented by the mean 𝑦𝑖 from each study with only one
arm. In addition to the mean, two other commonly used effect
sizes for continuous outcomes are the mean difference (MD) and
the standardized mean difference (SMD), which are applicable
to meta-analysis of studies with two arms. In the next two para-
graphs, we show that the 𝐼2

ANOVA statistic in (12) can be directly
generalized to handle these two scenarios.

5 of 18

 10970258, 2025, 10-12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.70089 by K
e Y

ang - B
eijing U

niversity O
f T

echnology , W
iley O

nline L
ibrary on [22/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



For a meta-analysis of MD, the summary statistics for the 𝑖th
study often consist of the observed MD 𝑦𝑖, the sample sizes 𝑛𝑇

𝑖
and

𝑛𝐶
𝑖

, and the standard errors 𝜎̂𝑦𝑇
𝑖

and 𝜎̂𝑦𝐶
𝑖

associated with the treat-
ment and control groups. With these notations, the mean square
within the populations can be computed as

MSWMA =

∑𝑘

𝑖=1

{
𝑛𝑇
𝑖

(
𝑛𝑇
𝑖
− 1

)
𝜎̂2
𝑦𝑇
𝑖

+ 𝑛𝐶
𝑖

(
𝑛𝐶
𝑖
− 1

)
𝜎̂2
𝑦𝐶
𝑖

}
∑𝑘

𝑖=1
(
𝑛𝑇
𝑖
+ 𝑛𝐶

𝑖

)
− 2𝑘

In addition, by defining the effective sample size as 𝑛𝑖 =
1∕(1∕𝑛𝑇

𝑖
+ 1∕𝑛𝐶

𝑖
) for each study, the formulas (9) and (11) can also

be directly followed to calculate MSBMA and the adjusted mean
sample size ñ. Lastly by (12), we can derive the 𝐼2

ANOVA statistic as
the estimated measure of heterogeneity. For more details about
the meta-analysis of MD including the statistical models and the
underlying assumptions, one may refer to Appendix D.

For a meta-analysis of SMD, the summary statistics will instead
report the observed SMD 𝑦𝑖 for each study, together with the sam-
ple sizes 𝑛𝑇

𝑖
and 𝑛𝐶

𝑖
, and the standard errors 𝜎̂𝑦𝑇

𝑖
and 𝜎̂𝑦𝐶

𝑖
. Then to

compute the 𝐼2
ANOVA statistic by (12), we note that the same proce-

dure as that for MD can still be followed to determine the values
of MSBMA and ñ. And moreover, we can also set MSWMA directly
to 1 since the observed effect sizes are already standardized. For
a comprehensive understanding of the model specifications for
meta-analysis of SMD, one may refer to Appendix E.

4 | The 𝑰2
A Statistic for the Mean

Recall that to estimate ICCHT, Higgins and Thompson [5] pro-
posed the easy-to-implement 𝐼2 statistic based on the 𝑄 statistic.
Nevertheless, for our new measure of heterogeneity ICCMA, the
ANOVA-based estimator in (12) is somewhat complicated and
may not be familiar for meta-analysts. This motivates us to fur-
ther propose a new estimator of ICCMA, referred to as 𝐼2

A, which
turns out to have a similar form as the 𝐼2 statistic. More specifi-
cally, we will present the 𝐼2

A statistic in Sections 4 to 6 for the three
effect sizes including the mean, MD and SMD, respectively, fol-
lowed by real data analyses and simulation studies that compare
the numerical performance of the 𝐼2, 𝐼2

ANOVA and 𝐼2
A statistics.

By (3), ICCHT is defined based on the assumption of a common
within-study variance. When this assumption does not hold, as
pointed out in the literature, the common within-study variance
𝜎2
𝑦

can be replaced by 𝜎̃2
𝑦

in (4) as an average of the 𝑘 within-study
variances. Now for ICCMA in (8), we have 𝜎2

pop = 𝑛𝑖𝜎
2
𝑦𝑖

, and con-
sequently, 𝑤𝑖 = 1∕𝜎2

𝑦𝑖
= 𝑛𝑖∕𝜎2

pop. Then by letting ñ = (
∑𝑘

𝑖=1𝑛𝑖 −∑𝑘

𝑖=1𝑛
2
𝑖
∕
∑𝑘

𝑖=1𝑛𝑖)∕(𝑘 − 1) be the adjusted mean sample size as in
(11), an identity between 𝜎̃2

𝑦
and 𝜎2

pop can be established as fol-
lows:

𝜎̃2
𝑦
= 𝑘 − 1∑𝑘

𝑖=1𝑤𝑖 −
∑𝑘

𝑖=1𝑤
2
𝑖
∕
∑𝑘

𝑖=1𝑤𝑖

= 1
ñ
𝜎2

pop (13)

In addition, since 𝐸{𝑄∕(𝑘 − 1) − 1} = 𝜏2∕𝜎̃2
𝑦

by Higgins and
Thompson [5], it follows that

𝐸

(
𝑄 − (𝑘 − 1)
(𝑘 − 1)ñ

)
= 𝜏2

𝜎2
pop

which leads to a method of moments estimator of 𝜏2∕𝜎2
pop

as {𝑄 − (𝑘 − 1)}∕{(𝑘 − 1)ñ}. Lastly, by noting that ICCMA =
(𝜏2∕𝜎2

pop)∕(𝜏
2∕𝜎2

pop + 1), our plug-in estimator for ICCMA is
given as

𝐼2
A = max

{
𝑄 − (𝑘 − 1)

𝑄 + (𝑘 − 1)(ñ − 1)
, 0
}

(14)

where, as usual, the maximum operation is kept to avoid a neg-
ative estimate. By comparing (4) and (14), we note that the dif-
ference between the 𝐼2 and 𝐼2

A statistics is purely on the term
(𝑘 − 1)(ñ − 1), which is a function of the study sample sizes and
the number of studies. In the special case when ñ = 1, the two
statistics will be exactly the same.

For more insights on how the estimated heterogeneity is adjusted
from the relative measure to the absolute measure by the study
sample sizes through (𝑘 − 1)(ñ − 1), we summarize below a few
interesting findings with the proofs in Appendix F.

a. First, we have (𝑘 − 1)(ñ − 1) ≥ 0, where the equality holds
only when 𝑛𝑖 = 1 for all 𝑘 studies. Consequently, it
yields that

𝐼2
A ≤ 𝐼2

under all the settings of meta-analysis with at least 2 studies.

b. For the balanced design where all sample sizes are equal
to 𝑛, we have ñ = 𝑛 and moreover (𝑘 − 1)(ñ − 1) = (𝑘 −
1)(𝑛 − 1). When 𝑘 → ∞ and 𝑛 → ∞, we can further show
that 𝑄∕{(𝑘 − 1)(𝑛 − 1)} → 𝜏2∕𝜎2

pop = 𝑂(1), indicating that
the two terms in the denominator of (14) are of the same
asymptotic order. Moreover by Slutsky’s theorem,

𝐼2
A →

𝜏2∕𝜎2
pop

𝜏2∕𝜎2
pop + 1

= ICCMA < 1

On the other hand, noting that 𝑄∕(𝑘 − 1) = 𝑂(𝑛) for any
fixed 𝑘 ≥ 2, we have 𝐼2 = 1 − 𝑂(1∕𝑛) → 1 as 𝑛 → ∞. Taken
together, it clearly explains why 𝐼2 may asymptotically
increase to 1, whereas our new 𝐼2

A will not.

c. For the unbalanced design, it can also be shown that (𝑘 −
1)(ñ − 1) is an increasing function of 𝑛𝑖 given that all other
sample sizes are fixed, and moreover, 𝑄∕{(𝑘 − 1)(ñ − 1)} →
𝜏2∕𝜎2

pop when 𝑘 → ∞ and all 𝑛𝑖 → ∞. Consequently, we still
have 𝐼2

A → ICCMA < 1 as that for the balanced case. In con-
trast, without the adjustment term (𝑘 − 1)(ñ − 1) that is the
same order of 𝑄, the 𝐼2 statistic will again, as observed in
the literature, rapidly increase to 1 as the sample sizes are
large.

d. Lastly, we can also express the 𝐼2
A statistic in (14) as

𝐼2
A = 𝜏2

𝜏2 + ñ𝜎̃2
𝑦

(15)

where 𝜏2 is the DerSimonian-Laird estimator as mentioned
in Section 1. When the assumption of a common population
variance holds, ñ𝜎̃2

𝑦
is exactly𝜎2

pop by (13). Otherwise, we can
still apply ñ𝜎̃2

𝑦
to compute the 𝐼2

A statistic by (15). And simi-
larly as 𝜎̃2

𝑦
explained in Böhning et al. [7], ñ𝜎̃2

𝑦
is asymptoti-

cally equivalent to the adjusted mean sample size multiplied
by the harmonic mean of the within-study variances.
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4.1 | Real Data Analysis

This section applies a real data example to illustrate the 𝐼2
A statis-

tic, and compare it with the 𝐼2
ANOVA and 𝐼2 statistics, for quantify-

ing the heterogeneity between the studies. Specifically, we revisit
a previous meta-analysis conducted by Jeong et al. [21], which
investigated the stem cell-based therapy as a novel approach for
the stroke treatment. Among various measures of efficacy and
safety, we focus on the point difference in the National Institutes
of Health Stroke Scale as the outcome. The summary data for a
total of 𝑘 = 10 studies are presented in Table 2.

Treating 𝜎̂2
𝑦𝑖

in Table 2 as the true values of 𝜎2
𝑦𝑖

, we have
∑10

𝑖=1𝑤𝑖 =
7.68 and

∑10
𝑖=1𝑤𝑖𝑦𝑖 = −43.39. This leads to Cochran’s 𝑄 statistic

in (2) as 𝑄 = 106.26. Moreover, by formula (4),

𝐼2 = max
{

106.26 − (10 − 1)
106.26

, 0
}

= 0.92

In addition, the adjusted mean sample size can be computed as
ñ = 8.97. Then by formula (14), it yields that

𝐼2
A = max

{
106.26 − (10 − 1)

106.26 + (10 − 1)(8.97 − 1)
, 0
}

= 0.55

TABLE 2 | The summary data of the ten studies for the meta-analysis
from Jeong et al. (2014), where 𝑦𝑖 are the observed effect sizes and 𝑛𝑖 are
the study sample sizes.

Study 𝒚𝒊 𝒏𝒊 𝝈̂2
𝒚𝒊

Wang (2013) −3.10 8 1.81
Prasad (2012) −6.30 11 3.16
Moniche (2012) −9.40 10 0.53
Friedrich (2012) −14.20 20 3.04
Honmou (2011) −7.00 12 1.40
Savitz (2011) −9.00 10 1.60
Battistella (2011) −3.40 6 2.41
Suarez (2009) −2.20 5 1.15
Savitz (2005) −1.40 5 0.97
Bang (2005) −2.00 5 1.06

Lastly, to also include the 𝐼2
ANOVA statistic for additional compar-

ison, we have 𝑦 =
∑10

𝑖=1𝑛𝑖𝑦𝑖∕
∑10

𝑖=1𝑛𝑖 = −7.55, MSBMA = 189.83,
and MSWMA = 25.81. Consequently, by formula (12),

𝐼2
ANOVA = max

{
189.83 − 25.81

189.83 + (8.97 − 1) × 25.81
, 0
}

= 0.41

To conclude, unlike the 𝐼2 statistic that is very close to 1, the val-
ues of 𝐼2

A and 𝐼2
ANOVA are close to each other and they both indicate

a moderate heterogeneity for the ten studies.

To further compare the 𝐼2
A statistic and the 𝐼2 statistic, as a com-

mon practice we assume that the ten studies are all normally
distributed. Then by the reported means and variances, we plot
their respective population distributions and the sampling distri-
butions of the observed effect sizes in Figure 2 for visualization.
From the figure, it is evident that the ten studies are not very
heterogeneous since most of the study populations are largely
overlapped in the range roughly from −15 to 5, corresponding to
a measure of 0.55 for the 𝐼2

A statistic. In contrast, the sampling
distributions of the observed effect sizes are less overlapped with
each other, indicating a much higher heterogeneity at 0.92 by the
𝐼2 statistic.

4.2 | Numerical Results

To compare the numerical performance of the three statistics,
we now conduct simulations based on the random-effects model
(6) with 𝜇 = 0 and 𝜎2 = 100. For the between-study variance, we
consider 𝜏2 = 9 or 90 that corresponds to ICCMA as 9∕(9 + 100) =
0.083 or 90∕(90 + 100) = 0.474, respectively. Let also 𝑘 = 3 or 10
to represent the small or large number of studies included in the
meta-analysis. For the sample size of each study, we consider the
unbalanced design with the sample size of the 𝑖th study being
𝑖 ∗ 𝑛, where 𝑖 = 1, . . . , 𝑘 and the common 𝑛 ranges from 10 to 90.
With each of the above settings, we then generate the raw data
from model (6) and report the summary data 𝑦𝑖 and 𝜎̂2

𝑦𝑖
for the

𝑘 studies. Finally with 𝑀 = 10, 000 repetitions, we present the
boxplots of the 𝐼2

A, 𝐼2
ANOVA and 𝐼2 statistics, together with their

mean values, in Figure 3. From the figure, it is evident that the

−30 −20 −10 0 10
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0.
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20
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−30 −20 −10 0 10
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FIGURE 2 | Population distributions of the ten studies and the sampling distributions of the observed effect sizes from Jeong et al. (2014). For each
study, the population distribution is assumed to be normal with mean 𝑦𝑖 and variance 𝑛𝑖𝜎̂

2
𝑦𝑖

. The sampling distribution of the effect size is assumed to
be normal with mean 𝑦𝑖 and variance 𝜎̂2

𝑦𝑖
.
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FIGURE 3 | Boxplots of the three statistics for the mean with 10,000 repetitions. The red boxes represent the 𝐼2
A statistic, the green boxes represent

the 𝐼2
ANOVA statistic, and the blue boxes represent the 𝐼2 statistic. The crosses on each box are the mean values of the 10000 repetitions. The solid lines

stand for the absolute heterogeneity ICCMA.

𝐼2 statistic has an increasing trend with the sample size 𝑛. This is
consistent with what was observed in Rücker et al. [8] that the 𝐼2

statistic always increases rapidly to 1 when the sample sizes are
large. In contrast, with each solid line representing the hetero-
geneity ICCMA between the study populations, we note that 𝐼2

A
and 𝐼2

ANOVA are not influenced by the sample size and also pro-
vide comparable estimates for ICCMA in terms of both bias and
variance. And more interestingly, they are able to perform even
better when the number of studies 𝑘 is larger.

Our next simulation is to examine the scenario where the com-
mon population variance assumption does not hold. For the 𝑖th
study, we generate the population variance in each replication
from a gamma distribution with shape parameter 25 and scale
parameter 4, or equivalently, with mean 100 and variance 400.
All other settings remain the same as in the previous simula-
tion. Note that for this case, the true value of ICCMA will vary
across replications because of the randomness in the population

variance. Lastly, we present in Figure F1 the simulation results
together with an ICCMA value using 𝜎2

pop = 100, which, as can be
seen, are similar to those for the common population variance.

5 | The 𝑰2
A Statistic for the Mean Difference

In addition to the mean considered in Section 4, two other com-
monly used effect sizes for continuous outcomes are the mean
difference (MD) and the standardized mean difference (SMD).
Following this, we will describe the 𝐼2

A statistic for MD in this
section and then for SMD in Section 6.

For a meta-analysis of MD, each study has two treatment
arms including the treatment group and the control group. The
summary statistics for each study then consist of the observed
MD 𝑦𝑖, the sample sizes 𝑛𝑇

𝑖
and 𝑛𝐶

𝑖
, and the standard errors

𝜎̂𝑦𝑇
𝑖

and 𝜎̂𝑦𝐶
𝑖

associated with the treatment and control groups.
Given these summary statistics, the estimated variance of the

8 of 18 Statistics in Medicine, 2025
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mean difference 𝑦𝑖 is 𝜎̂2
𝑦𝑖
= 𝜎̂2

𝑦𝑇
𝑖

+ 𝜎̂2
𝑦𝐶
𝑖

, which is also treated as
the true within-study variance of 𝑦𝑖 as 𝜎2

𝑦𝑖
= 𝜎2

𝑦𝑇
𝑖

+ 𝜎2
𝑦𝐶
𝑖

. In what
follows, we describe the derivation procedure for the 𝐼2

A statis-
tic in the meta-analysis of MD, which extends from that for
the meta-analysis of the mean. Following Section 4, we let
𝜎2
𝑦𝑖
= (1∕𝑛𝑇

𝑖
+ 1∕𝑛𝐶

𝑖
)𝜎2

pop, and moreover define the effective sam-
ple size for each study as 𝑛𝑖 = 1∕(1∕𝑛𝑇

𝑖
+ 1∕𝑛𝐶

𝑖
). This leads to

the inverse-variance weights as 𝑤𝑖 = 1∕𝜎2
𝑦𝑖
= 𝑛𝑖∕𝜎2

pop, and conse-
quently, the 𝐼2

A statistic for the meta-analysis of MD can again be
expressed as

𝐼2
A = max

{
𝑄 − (𝑘 − 1)

𝑄 + (𝑘 − 1)(ñ − 1)
, 0
}

(16)

In other words, the newly derived 𝐼2
A shares the same expres-

sion as in (14) but with a different definition of 𝑛𝑖. Moreover, the
expression in (15) also applies to the 𝐼2

A statistic for MD. Just as
property (d) applies to the 𝐼2

A statistic for the mean, the 𝐼2
A statistic

for MD is also applicable and interpretable when the population
variances differ. For more details on the model assumptions for
MD, refer to Appendix D.

5.1 | Real Data Analysis

To exemplify the 𝐼2
A statistic for MD, we revisit a meta-analysis

conducted in Avery et al. [22]. This study explores the effect of
interventions to taper long term opioid treatment for chronic
non-cancer pain. Among the several interventions, we consider

TABLE 3 | The summary data of the three studies for the
meta-analysis from Avery et al. (2022).

Study 𝒚𝑻
𝒊

𝒏𝑻
𝒊

𝝈̂𝒚𝑻
𝒊

𝒚𝑪

𝒊
𝒏𝑪
𝒊

𝝈̂𝒚𝑪
𝒊

Jackson (2021) −34 9 10.43 −66 6 12.78
Zheng (2019) −13.6 48 3.23 −8.8 60 3.14
Zheng (2008) −25.7 17 7.59 −10.9 18 2.80

the effect of acupuncture. For each study, the observed effect size
is the mean difference of reduced opioid dose. For easy reference,
we provide the summary data for the three studies in Table 3.

By Table 3, the estimated effect sizes 𝑦𝑖 for the three stud-
ies are (32.0,−4.8,−14.8) and the within-study variances of
𝑦𝑖 are (272.14, 20.29, 65.48), yielding that

∑3
𝑖=1𝑤𝑖 = 0.07 and∑3

𝑖=1𝑤𝑖𝑦𝑖 = 0.35. Moreover, Cochran’s 𝑄 statistic is given as 𝑄 =
6.50. Further by formula (4), we have

𝐼2 = max
{

6.50 − (3 − 1)
6.50

, 0
}

= 0.69

To compute the 𝐼2
A statistic, the effective sample sizes 𝑛𝑖 for the

three studies can be derived as 3.60, 26.67 and 8.74, respectively.
This leads to the adjusted mean sample size as ñ = 9.24, and
moreover by formula (14),

𝐼2
A = max

{
6.50 − (3 − 1)

6.50 + (3 − 1)(9.24 − 1)
, 0
}

= 0.20

Lastly, noting that 𝑦 = −3.65, MSBMA = 2848.76 and MSWMA =
586.93, we apply formula (12) and it yields that

𝐼2
ANOVA = max

{
2848.76 − 586.93

2848.76 + (9.24 − 1) × 586.93
, 0
}

= 0.29

To conclude, it is again evident that the values of 𝐼2
A and 𝐼2

ANOVA
are close to each other, and both of them are significantly different
from the value of 𝐼2.

To further compare the 𝐼2
A, 𝐼2

ANOVA and 𝐼2 statistics, we also plot
the population distributions for the three studies and the sam-
pling distributions of the observed effect sizes in Figure 4 for
visualization. We note that two of the populations are largely
overlapped with little heterogeneity, whereas the third popula-
tion is moderately deviated. Given this, we conclude that the
heterogeneity between the three studies may not be substantial
overall, if measured by the 𝐼2

A statistic. In contrast, the 𝐼2 statistic
concludes a very substantial heterogeneity between the sampling
distributions of the observed effect sizes.

−50 0 50 100
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Population distributions
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0.
06

0.
08

Sampling distributions

FIGURE 4 | Population distributions of the three studies and the sampling distributions of the observed effect sizes with blue for Zheng (2008),
green for Zheng (2019), and red for Jackson (2021). For each study, the population distribution is assumed to be normal with mean 𝑦𝑇

𝑖
− 𝑦𝐶

𝑖
and variance

{𝑛𝑇
𝑖
(𝑛𝑇

𝑖
− 1)𝜎̂2

𝑦𝑇
𝑖

+ 𝑛𝐶
𝑖
(𝑛𝐶

𝑖
− 1)𝜎̂2

𝑦𝐶
𝑖

}∕(𝑛𝑇
𝑖
+ 𝑛𝐶

𝑖
− 2). The sampling distribution of the effect size is assumed to be normal with mean 𝑦𝑇

𝑖
− 𝑦𝐶

𝑖
and variance

𝜎̂2
𝑦𝑇
𝑖

+ 𝜎̂2
𝑦𝐶
𝑖

.
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5.2 | Numerical Results

To numerically compare the 𝐼2
A, 𝐼2

ANOVA and 𝐼2 statistics, we gen-
erate the data from two-arm studies as follows:

𝑦𝑇
𝑖𝑗
= 𝜇𝑇 + 𝛿𝑇

𝑖
+ 𝜉𝑇

𝑖𝑗
, 𝑗 = 1, . . . , 𝑛𝑇

𝑖

𝑦𝐶
𝑖𝑗′

= 𝜇𝐶 + 𝛿𝐶
𝑖
+ 𝜉𝐶

𝑖𝑗′
, 𝑗′ = 1, . . . , 𝑛𝐶

𝑖
(17)

where 𝜉𝑇
𝑖𝑗

and 𝜉𝐶
𝑖𝑗′

are i.i.d. normal random errors with mean 0 and
common variance 𝜎2. For a more detailed description of model
(17), one may refer to Appendix D.

Without loss of generality, we set 𝜇𝑇 = 𝜇𝐶 = 0 and 𝜎2 = 1. We
also generate 𝛿𝑇

𝑖
and 𝛿𝐶

𝑖
independently from 𝑁(0, 0.045) or

𝑁(0, 0.45). With the observed effect sizes being
∑𝑛𝑇

𝑗=1𝑦
𝑇
𝑖𝑗
∕𝑛𝑇

𝑖
−∑𝑛𝐶

𝑗′=1𝑦
𝐶
𝑖𝑗′
∕𝑛𝐶

𝑖
, the between-study variance is 𝜏2 = 0.09 or 0.9,

yielding an ICCMA value of 0.083 or 0.474, respectively. For other
settings, we consider 𝑘 = 3 or 10 to represent a small or large
number of studies within the meta-analysis, and the sample sizes
of both treatment arms, 𝑛𝑇

𝑖
and 𝑛𝐶

𝑖
, to be identical. We further let

the sample sizes for both arms of the 𝑖th study be 𝑖 ∗ 𝑛, where
𝑖 ranges from 1 to 𝑘, and 𝑛 varies from 10 to 90. Then for each
simulation setting, we proceed to generate the raw data and com-
pute the summary statistics, including 𝑦𝑇

𝑖
, 𝑦𝐶

𝑖
, 𝜎̂2

𝑦𝑇
𝑖

and 𝜎̂2
𝑦𝐶
𝑖

, for
each of the 𝑘 studies. Finally with 𝑀 = 10, 000 repetitions, we
present the boxplots of the 𝐼2

A, 𝐼2
ANOVA and 𝐼2 statistics and also

visualize their mean values in Figure 5. Based on the numeri-
cal results, it is clear again that the 𝐼2 statistic monotonically
increases with the sample size 𝑛, whereas the 𝐼2

A and 𝐼2
ANOVA

statistics are not affected by the sample size. Moreover, the two
new statistics also yield similar estimates for ICCMA in most set-
tings, as well as provide a better performance when the number
of studies 𝑘 increases.

6 | The 𝑰2
A Statistic for the Standardized Mean

Difference

In addition to the mean difference (MD), another commonly used
effect size for continuous outcomes in two-arm studies is the

0.00

0.25

0.50

0.75

1.00

10 30 50 70 90
n

IA
2 IANOVA

2 I2
k = 3, ICCMA = 0.083
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1.00

10 30 50 70 90
n

k = 10, ICCMA = 0.083
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k = 3, ICCMA = 0.474
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FIGURE 5 | Boxplots of the three statistics for the mean difference with 10,000 repetitions. The red boxes represent the 𝐼2
A statistic, the green boxes

represent the 𝐼2
ANOVA statistic, and the blue boxes represent the 𝐼2 statistic. The crosses on each box are the mean values of the 10000 repetitions. The

solid lines stand for the absolute heterogeneity ICCMA.
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standardized mean difference (SMD). SMD is particularly use-
ful when the assumption of equal population variances across
different studies cannot be made. In such cases, the mean differ-
ence in each study is standardized to a uniform scale, ensuring
comparability for the subsequent meta-analysis. Consequently,
the estimated standardized mean difference 𝑦𝑖 can be viewed
as the observed mean difference of two population arms, both
with a variance of 1, indicating 𝜎2

pop = 1. For a comprehen-
sive understanding of the model specifications, one may refer
to Appendix E. Lastly, to estimate ICCMA for SMD, we use the
DerSimonian-Laird estimator to estimate 𝜏2 and set 𝜎2

pop to 1 in
formula (8), yielding the 𝐼2

A statistic as

𝐼2
A = max

{
𝑄 − (𝑘 − 1)

𝑄 + (𝑘 − 1)(𝑤̃ − 1)
, 0
}

(18)

where 𝑤̃ = (
∑𝑘

𝑖=1𝑤𝑖 −
∑𝑘

𝑖=1𝑤
2
𝑖
∕
∑𝑘

𝑖=1𝑤𝑖)∕(𝑘 − 1)with𝑤𝑖 being the
inverse-variance weights. Similar to 𝑛̃ in (11), 𝑤̃ may also be
referred to as the adjusted mean inverse-variance weight.

6.1 | Real Data Analysis

To assess the performance of the 𝐼2
A statistic in quantifying the

heterogeneity for SMD, we revisit the real data example presented
in Section 5.1. With the summary data provided in Table 3, we
first compute the estimated SMD and its corresponding variance
for each study. Two commonly used statistics for estimating SMD
are Cohen’s 𝑑 [23] and Hedges’ 𝑔 [24]. For a detailed guide on
computing Cohen’s 𝑑 and Hedges’ 𝑔, one may refer to Lin and
Aloe [25]. In this section, we use Hedges’ 𝑔 that derives an unbi-
ased estimate for SMD.

Following the formulas provided by Lin and Aloe [25], we
can derive the estimated SMDs for the three studies as
(0.96,−0.20,−0.62), and the within-study variances of 𝑦𝑖 as
(0.31, 0.04, 0.12). Further by

∑3
𝑖=1𝑤𝑖 = 38.12 and

∑3
𝑖=1𝑤𝑖𝑦𝑖 =

−7.43, Cochran’s 𝑄 statistic can be computed as 𝑄 = 5.83. Thus
by formula (4),

𝐼2 = max
{

5.83 − (3 − 1)
5.83

, 0
}

= 0.66

Noting also that
∑3

𝑖=1𝑤
2
𝑖
= 784.06 and 𝑤̃ = 8.78, by formula (18)

we have

𝐼2
A = max

{
5.83 − (3 − 1)

5.83 + (3 − 1)(8.78 − 1)
, 0
}

= 0.18

Lastly, to compute the 𝐼2
ANOVA statistic, we first derive the effec-

tive sample sizes 𝑛𝑖 for the three studies as 3.60, 26.67, and 8.74,
respectively, Moreover, we have 𝑦 = −0.19, MSBMA = 3.19, and
MSWMA = 1. Then by formula (12),

𝐼2
ANOVA = max

{
3.19 − 1

3.19 + (9.24 − 1) × 1
, 0
}

= 0.19

To further compare the three statistics, we plot the scaled popu-
lation distributions for the three studies and the sampling distri-
butions of the observed effect sizes in Figure 6. Specifically, with
SMDs as the effect sizes, all the scaled populations have a com-
mon variance of 1. Moreover, we apply the estimated SMDs as
the population means. Compared to Figure 4, the three scaled
populations in Figure 6 get more close to each other, resulting
in smaller values for the 𝐼2

A and 𝐼2
ANOVA statistics. On the other

hand, a measure of 0.66 for the 𝐼2 statistic indicates a large het-
erogeneity between the observed effect sizes.

6.2 | Numerical Results

To compare the 𝐼2
A, 𝐼2

ANOVA and 𝐼2 statistics for SMD, we generate
the data from the following two-arm studies:

𝑦𝑇
𝑖𝑗
= 𝜎𝑖(𝜇𝑇 + 𝛿𝑇

𝑖
+ 𝜉𝑇

𝑖𝑗
), 𝑗 = 1, . . . , 𝑛𝑇

𝑖

𝑦𝐶
𝑖𝑗′

= 𝜎𝑖(𝜇𝐶 + 𝛿𝐶
𝑖
+ 𝜉𝐶

𝑖𝑗′
), 𝑗′ = 1, . . . , 𝑛𝐶

𝑖
(19)

where 𝜉𝑇
𝑖𝑗

and 𝜉𝐶
𝑖𝑗′

are i.i.d. normal random errors with mean 0
and variance 1. Compared with model (17), this new model con-
tains an additional parameter 𝜎𝑖, which is used to rescale each

−4 −2 0 2 4

0.
0

0.
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0.
2

0.
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0.
4

Population distributions
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Sampling distributions

FIGURE 6 | Population distributions of the three scaled studies and the sampling distributions of the observed effect sizes with blue for Zheng
(2008), green for Zheng (2019), and red for Jackson (2021). For each study, the population distribution is assumed to be normal with mean SMD and
variance 1. The sampling distribution of the effect size is assumed to be normal with mean SMD and the variance is assumed to be the within-study
variance.
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FIGURE 7 | Boxplots of the three statistics for the standardized mean difference with 10,000 repetitions. The red boxes represent the 𝐼2
A statistic,

the green boxes represent the 𝐼2
ANOVA statistic, and the blue boxes represent the 𝐼2 statistic. The crosses on each box are the mean values of the 10000

repetitions. The solid lines stand for the absolute heterogeneity ICCMA.

study. For a more detailed description of model (19), refer to
Appendix E.

In this simulation, we let 𝜎𝑖 follow a uniform distribution
Unif(0.5, 1.5), which yields unequal population variances for the
𝑘 studies and thus SMD ought to be applied rather than MD. The
other settings are kept the same as those in Section 6.2. Then for
each simulation setting, we proceed to generate the raw data and
compute the summary statistics, including 𝑦𝑇

𝑖
, 𝑦𝐶

𝑖
, 𝜎̂2

𝑦𝑇
𝑖

and 𝜎̂2
𝑦𝐶
𝑖

,
for each of the 𝑘 studies. Finally with 𝑀 = 10, 000 repetitions,
we present the boxplots and the mean values of the 𝐼2

A, 𝐼2
ANOVA

and 𝐼2 statistics in Figure 7.

From Figure 7, it is evident that the 𝐼2 statistic is always mono-
tonically increasing with the sample size 𝑛, which is consistent
with the simulation results in Sections 4.2 and 5.2. In contrast,
the 𝐼2

A and 𝐼2
ANOVA statistics can always provide a good measure

for the quantify of heterogeneity between the study populations,
no matter whether the study sample sizes are large or not. For
SMD, 𝐼2

ANOVA provides a more accurate estimate for ICCMA with
large heterogeneity compared with 𝐼2

A.

7 | Conclusion and Discussion

Quantifying the heterogeneity is an important issue in
meta-analysis for decision making. The presence of hetero-
geneity affects the extent to which generalizable conclusions
can be formed and determines whether the random-effects
model or the fixed-effect model should be used. The 𝑄 statistic
is commonly used to test for the existence of the heterogeneity.
However, as mentioned in the Cochrane Handbook for System-
atic Reviews of Interventions [2], this test may have low power
when the number of studies is small. Some also argue that the
heterogeneity always exists, whether detectable by statistical

12 of 18 Statistics in Medicine, 2025

 10970258, 2025, 10-12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.70089 by K
e Y

ang - B
eijing U

niversity O
f T

echnology , W
iley O

nline L
ibrary on [22/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



tests or not. Thus, as a way to remedy, the 𝐼2 statistic was further
introduced to measure the extent of heterogeneity as

𝐼2 = max
{

𝑄 − (𝑘 − 1)
𝑄

, 0
}

Nowadays, both the 𝑄 statistic and the 𝐼2 statistic are rou-
tinely reported in the forest plot in meta-analysis, and the choice
between the random-effects model and the fixed-effect model
often relies on these two statistics. More specifically, if the 𝑝-value
of the 𝑄 statistic is less than 0.1 and the 𝐼2 statistic exceeds 0.5,
the random-effects model is preferred for meta-analysis; other-
wise, the fixed-effect model will be chosen [26–28]. It is noted,
however, that these two statistics are highly correlated since the
𝐼2 statistic is a monotonically increasing function of the 𝑄 statis-
tic. Additionally, the 𝑝-value based on the 𝑄 statistic only indi-
cates whether there is a statistical significance [29], but not reflect
regarding the biological difference between the studies. Even if
heterogeneity is not statistically detected, it may still be clinically
meaningful. Therefore, a random-effects model is often more
appropriate, and the inclusion of prediction intervals is recom-
mended in the practice of meta-analysis.

In this article, we have introduced a new measure, denoted
as ICCMA, to quantify the between-study heterogeneity for
meta-analysis. To explore the distinction between ICCHT and
ICCMA, we have also drawn an interesting connection between
ANOVA and meta-analysis, and learned that the essence of ICCHT
is to quantify the heterogeneity between the observed effect sizes.
As demonstrated by the motivating example in Section 2, the
sampling distributions of the observed effect sizes may exhibit a
significant dependency on the sample sizes, and they will asymp-
totically converge to their true effect sizes. Accordingly, with large
sample sizes, the observed effect sizes will also yield an increased
ICCHT close to one, no matter whether the underlying hetero-
geneity between the study populations is truly large or not. As
an important alternative, our newly defined ICCMA is proposed
to directly quantify the heterogeneity between the study pop-
ulations. More specifically, we have systematically studied the
statistical properties of ICCMA, including the monotonicity, the
location and scale invariance, the study size invariance, and the
sample size invariance. It is the sample size invariance that distin-
guishes our new absolute measure of heterogeneity from ICCHT.

Moreover, we have also proposed two new statistics to serve as the
estimates of ICCMA, where the 𝐼2

ANOVA statistic in (12) is derived
based on ANOVA, and the 𝐼2

A statistic in (14) is derived based on
the 𝑄 statistic as

𝐼2
A = max

{
𝑄 − (𝑘 − 1)

𝑄 + (𝑘 − 1)(ñ − 1)
, 0
}

where ñ is the adjusted mean sample size for the 𝑘 studies. In
addition, the 𝐼2

A statistic can also be expressed as 𝐼2
A = 𝜏2∕(𝜏2 +

ñ𝜎̃2
𝑦
). When the assumption of a common population variance

holds, ñ𝜎̃2
𝑦

equals the common population variance 𝜎2
pop; other-

wise, it serves as a representative value for 𝜎2
pop. This demon-

strates that our 𝐼2
A statistic is also widely applicable to scenar-

ios where the population variances differ. For practical use, the
exact formulas for the 𝐼2

A and 𝐼2
ANOVA statistics are also derived

under two other common scenarios with the mean difference

or the standardized mean difference as the effect size. Simula-
tions and real data analyses demonstrate that they both provide
asymptotically unbiased estimators of the absolute heterogene-
ity between the study populations, and as expected, they also do
not depend on the study sample sizes. For most cases, 𝐼2

A and
𝐼2

ANOVA show similar performance in estimating ICCMA. How-
ever, for meta-analysis of the standardized mean difference with
large heterogeneity, 𝐼2

ANOVA offers a slightly better estimate of
ICCMA than 𝐼2

A. Given that the 𝑄 statistic is commonly reported
in meta-analysis and that 𝐼2

A can be conveniently calculated from
the 𝑄 statistic, we recommend using 𝐼2

A in practical applications.
But, of course, in case a higher accuracy is desired, the more com-
plex 𝐼2

ANOVA should be used, particularly for meta-analysis of the
standardized mean difference. To conclude, the 𝐼2

A statistic can
serve as a supplemental measure to monitor the situations where
the study effect sizes are indeed similar with little biological dif-
ference. In such scenario, the fixed-effect model can be appropri-
ate. Although if the sample sizes are very large, we note that the
𝐼2 statistic may still rapidly increase to 1 showing a large hetero-
geneity and subsequently a random-effects model will continue
to be adopted. In view of this, we are thus confident that the 𝐼2

A
statistic can add new value to meta-analysis, for example, being
included in the forest plot as a supplement to the 𝐼2 statistic.

In addition, as shown in Figures 3, 5, and 7, the 𝐼2
A statistic tends

to slightly underestimate ICCMA when 𝑘 is small and ICCMA is
large. This underestimation may be primarily due to the inac-
curate estimation of 𝜏2. While the 𝐼2

A statistic has the advantage
of being directly expressed using the 𝑄 statistic, making it more
convenient to use, it implicitly relies on the DerSimonian-Laird
(DL) method for estimating 𝜏2. Although the DL estimator is
most commonly used, it does have limitations, and numerous
alternative methods have been proposed to further improve it,
as summarized in Veroniki et al. [30]. More recently, Kulinskaya
et al. [31] and Bakbergenuly et al. [32] further highlighted that the
𝑄 statistic may perform poorly in estimating 𝜏2, partly because
it does not account for the uncertainty in the within-study vari-
ances. To conclude, future research is warranted to investigate the
impact of the 𝜏2 estimate across various effect sizes on the estima-
tion accuracy of ICCMA, offering a broader range of options for
estimating the measure of heterogeneity.

Lastly, it is worth noting that there are also several interesting
directions for future research. First, the current work has pre-
sented its primary focus on meta-analysis with continuous out-
comes. As a parallel work, it can be equally important for the 𝐼2

A
statistic to be further extended to meta-analysis with binary out-
comes, which are also commonly encountered in clinical studies.
However, extending 𝐼2

A to meta-analysis with binary outcomes
may not be straightforward. Unlike the continuous outcomes,
the binary outcomes do not have a direct definition of the pop-
ulation variance for each study, making the task more complex.
To illustrate this challenge, we now consider a study with two
treatment arms and use the log odds ratio (lnOR) as the effect
size. For the treatment group, let 𝑎𝑖 represent the number of
events, 𝑝𝑇

𝑖
the event rate, and 𝑛𝑇

𝑖
the total number of partici-

pants. In this case, the event number 𝑎𝑖 follows the binomial
distribution Bin(𝑛𝑇

𝑖
, 𝑝𝑇

𝑖
). Similarly, let 𝑏𝑖, 𝑝𝐶𝑖 and 𝑛𝐶

𝑖
be the num-

ber of events, the event rate, and the total number of partici-
pants in the control group, and moreover 𝑏𝑖 ∼ Bin(𝑛𝐶

𝑖
, 𝑝𝐶

𝑖
). Then

the observed effect size (lnOR) for the study will be calculated
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as 𝑦𝑖 = ln[{𝑎𝑖∕(𝑛𝑇𝑖 − 𝑎𝑖)}∕{𝑏𝑖∕(𝑛𝐶𝑖 − 𝑏𝑖)}], with the within-study
variance estimated by 𝜎2

𝑦𝑖
= 1∕𝑎𝑖 + 1∕(𝑛𝑇

𝑖
− 𝑎𝑖) + 1∕𝑏𝑖 + 1∕(𝑛𝐶

𝑖
−

𝑏𝑖). For more details, one may refer to Higgins et al. [2]. Given
this setup, it may not be straightforward to define a common
study population variance 𝜎2

pop based on the within-study vari-
ance 𝜎2

𝑦𝑖
and the sample sizes 𝑛𝑇

𝑖
and 𝑛𝐶

𝑖
and so requires further

investigation.
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Appendix A

Proof of the Properties of ICCMA

Proof of “Monotonicity”. By the definition in (8), we can rewrite
ICCMA as

ICCMA = 1
1 + 𝜎2

pop∕𝜏2

This shows that ICCMA is a monotonically increasing function of 𝜏2∕𝜎2
pop

and so property (i′) holds. ◽

Proof of “Location and Scale Invariance”. To prove the location and scale
invariance, for any constants 𝑎 and 𝑏 > 0, we assume that the newly
observed effect sizes are 𝑦′

𝑖𝑗
= 𝑎 + 𝑏𝑦𝑖𝑗 for 𝑖 = 1, . . . , 𝑘 and 𝑗 = 1, . . . , 𝑛𝑖.

Let also 𝜇′
𝑖
= 𝑎 + 𝑏𝜇𝑖 be the true effect sizes of the new study populations.

Then consequently, the between-study variance and the common popu-
lation variance are given as

(𝜏2)′ = var(𝜇′
𝑖
) = var(𝑎 + 𝑏𝜇𝑖) = 𝑏2𝜏2,

(𝜎2
pop)

′ = var(𝑎 + 𝑏𝑦𝑖𝑗 |𝑎 + 𝑏𝜇𝑖) = 𝑏2𝜎2
pop

Further by (8), the measure of heterogeneity between the new studies is

ICC′
MA = (𝜏2)′

(𝜏2)′ + (𝜎2
pop)′

= 𝑏2𝜏2

𝑏2𝜏2 + 𝑏2𝜎2
pop

= 𝜏2

𝜏2 + 𝜎2
pop

= ICCMA

This verifies the property of location and scale invariance. ◽

Proof of “Study Size Invariance”. To prove the study size invariance,
we assume there are a total of 𝑘′ studies. Then by the random-effects
model in (1), since the individual means 𝜇𝑖 are i.i.d. from 𝑁(𝜇, 𝜏2),
the between-study variance will remain unchanged as 𝜏2 regardless

of the number of studies. Further by the common population vari-
ance assumption, we have var(𝑦𝑖𝑗 |𝜇𝑖) = 𝜎2

pop for all 𝑖 = 1, . . . , 𝑘′ and 𝑗 =
1, . . . , 𝑛𝑖. This proves the property of study size invariance. ◽

Proof of “Sample Size Invariance”. To prove the sample size invariance,
we assume that the new sample sizes are 𝑛′

𝑖
for each study, and conse-

quently 𝑦′
𝑖
=
∑𝑛′

𝑖

𝑗=1𝑦𝑖𝑗∕𝑛
′
𝑖

are the new effect sizes. Then under the common
population variance assumption that var(𝑦𝑖𝑗 |𝜇𝑖) = 𝜎2

pop for all 𝑖 and 𝑗, we
have 𝜎2

𝑦′
𝑖

= var(𝑦′
𝑖
|𝜇𝑖) = 𝜎2

pop∕𝑛
′
𝑖
, or equivalently, 𝑛′

𝑖
𝜎2
𝑦′
𝑖

= 𝜎2
pop. That is, no

matter how the sample sizes vary, the common population variance will
always remain unchanged. Finally, noting that 𝜏2 also remains since the
study populations are unaltered, we thus have the property of sample size
invariance. ◽

Appendix B

Methods for Estimating ICC

To estimate ICC from the random-effects ANOVA in (5), we first partition
the total variation of the observations into two components as

𝑘∑
𝑖=1

𝑛𝑖∑
𝑗=1

(𝑦𝑖𝑗 − 𝑦)2 =
𝑘∑

𝑖=1
𝑛𝑖(𝑦𝑖 − 𝑦)2 +

𝑘∑
𝑖=1

𝑛𝑖∑
𝑗=1

(𝑦𝑖𝑗 − 𝑦𝑖)2 (B1)

where 𝑦𝑖 =
∑𝑛𝑖

𝑗=1𝑦𝑖𝑗∕𝑛𝑖 are the individual sample means, and 𝑦 =∑𝑘

𝑖=1
∑𝑛𝑖

𝑗=1𝑦𝑖𝑗∕
∑𝑘

𝑖=1𝑛𝑖 is the grand sample mean. More specifically, the
term on the left-hand side of (B1) is the total sum of squares (SST), and
the two terms on the right-hand side are the sum of squares between the
populations (SSB) and the error sum of squares within the populations
(SSW), respectively.

By equating SSB and SSW to their respective expected values, Cochran
[19] derived the method of moments estimators of 𝜏2 and 𝜎2. Further by
plugging these two estimators in formula (7), it yields the ANOVA estima-
tor for the unknown ICC. By Smith [16], the ANOVA estimator is a biased
but consistent estimator. Moreover, as the method of moments estimators
may take a negative value when SSB∕𝑘 < SSW∕(

∑𝑘

𝑖=1(𝑛𝑖 − 1), one often
truncates the negative value to 0 when it occurs. For the balanced case
when the sample sizes are all equal, Searle [33] derived an exact confi-
dence interval for ICC based on the ANOVA table. For the unbalanced
case, however, the exact confidence interval from the ANOVA table is not
available. As a remedy, Thomas and Hultquist [20] and Donner [17] sug-
gested an adjusted confidence interval in which the common sample size
in the balanced case is replaced by the average sample size. They further
showed by simulation studies that the adjusted confidence interval per-
forms very well in terms of the coverage probability.

Besides the well-known ANOVA estimator, it is noteworthy that there are
also other estimators for ICC in the literature. To name a few, Thomas
and Hultquist [20] constructed a confidence interval for ICC based on
the unweighted average of the individual sample means 𝑦̃ =

∑𝑘

𝑖=1𝑦𝑖∕𝑘.
Observing that ICC = (𝜏2∕𝜎2)∕(𝜏2∕𝜎2 + 1), Wald [34] proposed another
estimator for ICC by first estimating 𝜏2∕𝜎2, yet as a limitation, there does
not exist a closed form for either the point estimator or its confidence
interval. As another alternative, by the facts that cov(𝑦𝑖𝑗 , 𝑦𝑖𝑙) = 𝜏2 for 𝑗 ≠ 𝑙

and var(𝑦𝑖𝑗 ) = 𝜏2 + 𝜎2, Karlin et al. [35] proposed to estimate ICC by the
Pearson product-moment correlation computed over all the possible pairs
of (𝑦𝑖𝑗 , 𝑦𝑖𝑙) for 𝑗 ≠ 𝑙 with some weighting schemes. In addition, Donner
and Koval [36, 37] proposed an iterative algorithm to compute the maxi-
mum likelihood estimator (MLE) for ICC directly, and presented its per-
formance by simulations when the number of studies is large. For more
estimators of ICC, one may also refer to Donner [38], Sahai and Ojeda
[39], and the references therein.

Despite the rich literature on the estimation of ICC, none of the existing
estimators is known to be uniformly better than the others in the unbal-
anced case [39]. In practice, thanks to its simple and elegant form, the
ANOVA estimator is frequently treated as the optimal estimator and so
is most commonly used for estimating ICC. Lastly, we also note that the
ANOVA estimator and the confidence interval suggested by Thomas and
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Hultquist [20] and Donner [17] can be readily implemented by the func-
tion ICCest in the R package ‘ICC’.

Appendix C

The Derivation of the 𝐼2
ANOVA Statistic

To estimate ICCMA, we begin by presenting the following lemma along
with its proof.

Lemma 1. With model (5) and the summary data 𝑦𝑖, 𝜎̂
2
𝑦𝑖

for 𝑖 = 1, . . . , 𝑘
in meta-analysis, we have 𝐸(MSBMA) = ñ𝜏2 + 𝜎2

pop and 𝐸(MSWMA) =
𝜎2

pop.

Proof of Lemma 1. Denote by 𝜎2
𝑦𝑖
= 𝜎2∕𝑛𝑖. With the summary data, 𝑦𝑖 are

independent normal random variables with mean 𝜇 and variances 𝜏2 +
𝜎2
𝑦𝑖

. Then the variance of
∑𝑘

𝑖=1𝑛𝑖𝑦𝑖 is

Var

(
𝑘∑

𝑖=1
𝑛𝑖𝑦𝑖

)
=

𝑘∑
𝑖=1

Var
(
𝑛𝑖𝑦𝑖

)
= 𝜏2

𝑘∑
𝑖=1

𝑛2
𝑖
+

𝑘∑
𝑖=1

𝑛2
𝑖
𝜎2
𝑦𝑖

Thus,

𝐸

(
𝑘∑

𝑖=1
𝑛𝑖𝑦𝑖

)2

= Var

(
𝑘∑

𝑖=1
𝑛𝑖𝑦𝑖

)
+

{
𝐸

(
𝑘∑

𝑖=1
𝑛𝑖𝑦𝑖

)}2

= 𝜏2
𝑘∑

𝑖=1
𝑛2
𝑖
+

𝑘∑
𝑖=1

𝑛2
𝑖
𝜎2
𝑦𝑖
+ 𝜇2

(
𝑘∑

𝑖=1
𝑛𝑖

)2

Furthermore, it can be derived that

𝐸

{
𝑘∑

𝑖=1
𝑛𝑖
(
𝑦𝑖 − 𝑦

)2
}

=
𝑘∑

𝑖=1
𝑛𝑖𝐸

(
𝑦2
𝑖

)
− 1∑𝑘

𝑖=1𝑛𝑖

𝐸

(
𝑘∑

𝑖=1
𝑛𝑖𝑦𝑖

)2

=
𝑘∑

𝑖=1
𝑛𝑖

[
Var
(
𝑦𝑖
)
+
{
𝐸
(
𝑦𝑖
)}2

]
− 1∑𝑘

𝑖=1𝑛𝑖

𝐸

(
𝑘∑

𝑖=1
𝑛𝑖𝑦𝑖

)2

=
𝑘∑

𝑖=1
𝑛𝑖

(
𝜏2 + 𝜎2

𝑦𝑖
+ 𝜇2

)
− 1∑𝑘

𝑖=1𝑛𝑖{
𝜏2

𝑘∑
𝑖=1

𝑛2
𝑖
+

𝑘∑
𝑖=1

𝑛2
𝑖
𝜎2
𝑦𝑖
+ 𝜇2(

𝑘∑
𝑖=1

𝑛𝑖)2

}

= 𝜏2(
𝑘∑

𝑖=1
𝑛𝑖 −

∑𝑘

𝑖=1𝑛
2
𝑖∑𝑘

𝑖=1𝑛𝑖

) +
𝑘∑

𝑖=1
𝑛𝑖𝜎

2
𝑦𝑖
−

∑𝑘

𝑖=1𝑛
2
𝑖
𝜎2
𝑦𝑖∑𝑘

𝑖=1𝑛𝑖

Since 𝜎2
𝑦𝑖
= 𝜎2

pop∕𝑛𝑖, and ñ = (
∑𝑘

𝑖=1𝑛𝑖 −
∑𝑘

𝑖=1𝑛
2
𝑖
∕
∑𝑘

𝑖=1𝑛𝑖)∕(𝑘 − 1),

𝐸

{
𝑘∑

𝑖=1
𝑛𝑖
(
𝑦𝑖 − 𝑦

)2
}

= (𝑘 − 1)ñ𝜏2 + (𝑘 − 1)𝜎2
pop

Thus, 𝐸(MSBMA) = ñ𝜏2 + 𝜎2
pop.

As for 𝐸(MSWMA) = 𝜎2
pop, it is derived directly by the fact that 𝐸(𝑛𝑖𝜎̂

2
𝑦𝑖
) =

𝜎2
pop.

With Lemma 1, 𝐸(MSBMA − MSWMA) = ñ𝜏2, and 𝐸{MSBMA + (ñ −
1)MSWMA} = ñ(𝜏2 + 𝜎2

pop). Thus, ICCMA = 𝜏2∕(𝜏2 + 𝜎2
pop) can be esti-

mated by (MSBMA − MSWMA)∕{MSBMA + (ñ − 1)MSWMA}. Truncating
the negative value to zero, the 𝐼2

ANOVA statistic in (12) can be derived.

Appendix D

The Statistical Model for the Mean Difference in Meta-Analysis

For meta-analysis of studies with two arms, we start with modeling the
individual patient data in a single study. In analogy with model (5), we

model the individual observations 𝑦𝑇
𝑖𝑗

and 𝑦𝐶
𝑖𝑗′

of the treatment group and
the control group for the 𝑖th study as

𝑦𝑇
𝑖𝑗
= 𝜇𝑇 + 𝛿𝑇

𝑖
+ 𝜉𝑇

𝑖𝑗
, 𝑗 = 1, . . . , 𝑛𝑇

𝑖
,

𝑦𝐶
𝑖𝑗′

= 𝜇𝐶 + 𝛿𝐶
𝑖
+ 𝜉𝐶

𝑖𝑗′
, 𝑗′ = 1, . . . , 𝑛𝐶

𝑖

where the superscript “T” represents the treatment group, and the super-
script “C” represents the control group. Similar to the assumptions in
model (5), we assume that 𝛿𝑇

𝑖
, 𝜉𝑇

𝑖𝑗′
, 𝛿𝐶

𝑖
and 𝜉𝐶

𝑖𝑗′
are independent of each

other. For the random errors of different observations in the same study,
it is natural to assume they are i.i.d. normal random errors with mean 0
and share a common variance 𝜎2. Then the true effect size for each study
is routinely presented by the mean difference

MD𝑖 = (𝜇𝑇 + 𝛿𝑇
𝑖
) − (𝜇𝐶 + 𝛿𝐶

𝑖
)

For each study, the observed mean difference is

𝑦𝑇
𝑖
− 𝑦𝐶

𝑖
= (𝜇𝑇 − 𝜇𝐶 ) + (𝛿𝑇

𝑖
− 𝛿𝐶

𝑖
) +

⎛⎜⎜⎝
∑𝑛𝑇

𝑖

𝑗=1𝜉𝑖𝑗

𝑛𝑇
𝑖

−
∑𝑛𝐶

𝑖

𝑗′=1𝜉𝑖𝑗

𝑛𝐶
𝑖

⎞⎟⎟⎠ (D1)

where 𝑦𝑇
𝑖
=
∑𝑛𝑇

𝑗=1𝜉𝑖𝑗∕𝑛
𝑇
𝑖

, and 𝑦𝐶
𝑖
=
∑𝑛𝐶

𝑗=1𝜉𝑖𝑗∕𝑛
𝐶
𝑖

. Furthermore, let 𝑦𝑖 =

𝑦𝑇
𝑖
− 𝑦𝐶

𝑖
, 𝜇 = 𝜇𝑇 − 𝜇𝐶 , 𝛿𝑖 = 𝛿𝑇

𝑖
− 𝛿𝐶

𝑖
, and 𝜖𝑖 =

∑𝑛𝑇
𝑖

𝑗=1𝜉𝑖𝑗∕𝑛
𝑇
𝑖
−
∑𝑛𝐶

𝑖

𝑗′=1𝜉𝑖𝑗∕𝑛
𝐶
𝑖

.
Regardless of the dependence between 𝛿𝑇

𝑖
and 𝛿𝐶

𝑖
, we simply assume that

𝛿𝑖 are i.i.d. normal random variables with mean 0 and variance 𝜏2 ≥ 0,
where 𝜏2 measures the magnitude of the heterogeneity between the stud-
ies. Then model (D1) reduces to

𝑦𝑖 = 𝜇 + 𝛿𝑖 + 𝜖𝑖 (D2)

where 𝛿𝑖
i.i.d.∼ 𝑁(0, 𝜏2) and 𝜖𝑖

ind∼ 𝑁(0, (1∕𝑛𝑇
𝑖
+ 1∕𝑛𝐶

𝑖
)𝜎2). We note that

model (D2) has the same form as in (6), except for the variance of 𝜖𝑖.

To estimate ICCMA for the mean difference based on ANOVA, we apply
the results for the single-arm studies directly. Letting 𝑛𝑖 = 1∕(1∕𝑛𝑇

𝑖
+

1∕𝑛𝐶
𝑖
), Lemma 1 in Appendix C also holds that

𝐸(MSBMA) = ñ𝜏2 + 𝜎2,

𝐸(MSWMA) = 𝜎2

Together with the notation of ñ, the 𝐼2
ANOVA statistic in (12) can be derived.

The 𝐼2
A statistic in (16) is derived similar to that for the mean. Further-

more, similar to the expression in formula (15), the 𝐼2
A statistic can also be

applied and well interpreted when the population variances differ across
the studies.

Appendix E

The Statistical Model for the Standardized Mean Difference in
Meta-Analysis

For the standardized mean difference, we model the individual observa-
tions 𝑦𝑇

𝑖𝑗
and 𝑦𝐶

𝑖𝑗′
of the treatment group and the control group for the 𝑖th

study as

𝑦𝑇
𝑖𝑗
= 𝜎𝑖(𝜇𝑇 + 𝛿𝑇

𝑖
+ 𝜉𝑇

𝑖𝑗
), 𝑗 = 1, . . . , 𝑛𝑇

𝑖
,

𝑦𝐶
𝑖𝑗′

= 𝜎𝑖(𝜇𝐶 + 𝛿𝐶
𝑖
+ 𝜉𝐶

𝑖𝑗′
), 𝑗′ = 1, . . . , 𝑛𝐶

𝑖

where the superscript “T” represents the treatment group, and the super-
script “C” represents the control group. Similar to the assumptions in
model (5), we assume that 𝛿𝑇

𝑖
, 𝜉𝑇

𝑖𝑗′
, 𝛿𝐶

𝑖
and 𝜉𝐶

𝑖𝑗′
are independent of each

other. In (ipdsmd), 𝜉𝑇
𝑖𝑗′

and 𝜉𝐶
𝑖𝑗′

are assumed to be i.i.d. normal random
errors with mean 0 and variance 1. Then with different values of 𝜎𝑖, the
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population variances for different studies are 𝜎2
𝑖
, respectively. To elimi-

nate the influence of the scale, SMDs are considered to represent the effect
sizes, which is defined by

SMD𝑖 = {(𝜎𝑖𝜇
𝑇 + 𝜎𝑖𝛿

𝑇
𝑖
) − (𝜎𝑖𝜇

𝐶 + 𝜎𝑖𝛿
𝐶
𝑖
)}∕𝜎𝑖

= (𝜇𝑇 + 𝛿𝑇
𝑖
) − (𝜇𝐶 + 𝛿𝐶

𝑖
)

For each study, SMD𝑖 is estimated by

𝑦𝑇
𝑖
− 𝑦𝐶

𝑖

𝜎̂𝑖

=
𝜎𝑖

𝜎̂𝑖

⎧⎪⎨⎪⎩(𝜇
𝑇 − 𝜇𝐶 ) + (𝛿𝑇

𝑖
− 𝛿𝐶

𝑖
) +

⎛⎜⎜⎝
∑𝑛𝑇

𝑖

𝑗=1𝜉𝑖𝑗

𝑛𝑇
𝑖

−
∑𝑛𝐶

𝑖

𝑗′=1𝜉𝑖𝑗

𝑛𝐶
𝑖

⎞⎟⎟⎠
⎫⎪⎬⎪⎭ (E1)

where 𝜎̂𝑖 is an estimate for 𝜎𝑖, 𝑦𝑇𝑖 =
∑𝑛𝑇

𝑗=1𝜉𝑖𝑗∕𝑛
𝑇
𝑖

, and 𝑦𝐶
𝑖
=
∑𝑛𝐶

𝑗=1𝜉𝑖𝑗∕𝑛
𝐶
𝑖

.
For simplicity, we assume that 𝜎𝑖 can be accurately estimated and thus
𝜎𝑖∕𝜎̂𝑖 = 1. Furthermore, let 𝑦𝑖 = 𝑦𝑇

𝑖
− 𝑦𝐶

𝑖
, 𝜇 = 𝜇𝑇 − 𝜇𝐶 , 𝛿𝑖 = 𝛿𝑇

𝑖
− 𝛿𝐶

𝑖
, and

𝜖𝑖 =
∑𝑛𝑇

𝑖

𝑗=1𝜉𝑖𝑗∕𝑛
𝑇
𝑖
−
∑𝑛𝐶

𝑖

𝑗′=1𝜉𝑖𝑗∕𝑛
𝐶
𝑖

. Regardless of the dependence between 𝛿𝑇
𝑖

and 𝛿𝐶
𝑖

, we simply assume that 𝛿𝑖 are i.i.d. normal random variables with
mean 0 and variance 𝜏2 ≥ 0, where 𝜏2 measures the magnitude of the het-
erogeneity between the studies. Then model (E1) reduces to

𝑦𝑖 = 𝜇 + 𝛿𝑖 + 𝜖𝑖 (E2)

where 𝛿𝑖
i.i.d.∼ 𝑁(0, 𝜏2) and 𝜖𝑖

ind∼ 𝑁(0, 1∕𝑛𝑇
𝑖
+ 1∕𝑛𝐶

𝑖
). We note that model

(E2) has the same form as in (6), except for the variance of 𝜖𝑖.

To estimate ICCMA for the standardized mean difference based on
ANOVA, we also apply the results for the single-arm studies directly. Let-
ting 𝑛𝑖 = 1∕(1∕𝑛𝑇

𝑖
+ 1∕𝑛𝐶

𝑖
), Lemma 1 in Appendix C also holds that

𝐸(MSBMA) = ñ𝜏2 + 1

Together with the notation of ñ and MSBMA = 1, the 𝐼2
ANOVA statistic in

(12) can be derived.

Appendix F

Comparison Between the 𝐼2 and 𝐼2
A Statistics

Proof of (a). First, (𝑘 − 1)(ñ − 1) in (14) can be expressed as

𝑘∑
𝑖=1

𝑛𝑖 −
∑𝑘

𝑖=1𝑛
2
𝑖∑𝑘

𝑖=1𝑛𝑖

− (𝑘 − 1)

=
(
∑𝑘

𝑖=1𝑛𝑖)
2 −

∑𝑘

𝑖=1𝑛
2
𝑖
− (𝑘 − 1)

∑𝑘

𝑖=1𝑛𝑖∑𝑘

𝑖=1𝑛𝑖

=

{
∑𝑘

𝑖=1(𝑛𝑖 − 1) + 𝑘}2 −
∑𝑘

𝑖=1{(𝑛𝑖 − 1) + 1}2 − (𝑘 − 1)

{
∑𝑘

𝑖=1(𝑛𝑖 − 1) + 𝑘}∑𝑘

𝑖=1𝑛𝑖

=
{
∑𝑘

𝑖=1(𝑛𝑖 − 1)}2 −
∑𝑘

𝑖=1(𝑛𝑖 − 1)2 + (𝑘 − 1)
∑𝑘

𝑖=1(𝑛𝑖 − 1)∑𝑘

𝑖=1𝑛𝑖

Since the sample sizes 𝑛𝑖 ≥ 1 for all the studies, we have {
∑𝑘

𝑖=1(𝑛𝑖 − 1)}2 −∑𝑘

𝑖=1(𝑛𝑖 − 1)2 ≥ 0. Noting also that 𝑘 ≥ 2, it further yields that
∑𝑘

𝑖=1𝑛𝑖 −∑𝑘

𝑖=1𝑛
2
𝑖
∕
∑𝑘

𝑖=1𝑛𝑖 − (𝑘 − 1) ≥ 0, and the equality holds only when 𝑛𝑖 = 1 for
all studies. ◽

Proof of (b). For the balanced design, the weights are given by 𝑤𝑖 =
𝑛∕𝜎2

pop. Hence,

𝑄

(𝑘 − 1)(ñ − 1)
=
∑𝑘

𝑖=1𝑤𝑖(𝑦𝑖 −
∑𝑘

𝑖=1𝑤𝑖𝑦𝑖∕
∑𝑘

𝑖=1𝑤𝑖)2

(𝑘 − 1)(𝑛 − 1)

= 𝑛

𝑛 − 1
⋅

1
𝜎2

pop
⋅

∑𝑘

𝑖=1(𝑦𝑖 −
∑𝑘

𝑖=1𝑦𝑖∕𝑘)
2

𝑘 − 1

As 𝑛 → ∞, 𝑦𝑖 converges in distribution to 𝑁(𝜇, 𝜏2). Therefore,∑𝑘

𝑖=1(𝑦𝑖 −
∑𝑘

𝑖=1𝑦𝑖∕𝑘)
2∕𝜏2 converges in distribution to 𝜒2(𝑘 − 1). Along

with the fact that Var{
∑𝑘

𝑖=1(𝑦𝑖 −
∑𝑘

𝑖=1𝑦𝑖∕𝑘)
2∕(𝑘 − 1)} → 0 as 𝑘 → ∞, it

follows that 𝑄∕{(𝑘 − 1)(𝑛 − 1)} converges in probability to 𝜏2∕𝜎2
pop as

𝑘 → ∞ and 𝑛 → ∞.

Similarly, for any fixed 𝑘, it can be drived that 𝑄∕(𝑘 − 1) =
(𝑛∕𝜎2

pop)
∑𝑘

𝑖=1(𝑦𝑖 −
∑𝑘

𝑖=1𝑦𝑖∕𝑘)
2∕(𝑘 − 1) = 𝑂(𝑛). ◽

Proof of (c). When all other sample sizes are fixed, we have

𝜕{(𝑘 − 1)(ñ − 1)}
𝜕𝑛𝑖

=
𝜕

{
𝑛𝑖 +

∑
𝑗≠𝑖 𝑛𝑗 − (𝑛2

𝑖
+
∑

𝑗≠𝑖 𝑛
2
𝑗
)∕(𝑛𝑖 +

∑
𝑗≠𝑖 𝑛𝑗 )

}
𝜕𝑛𝑖

=
2
∑

𝑗≠𝑖 𝑛
2
𝑗

𝑛2
𝑖
+ 2𝑛𝑖

∑
𝑗≠𝑖 𝑛𝑗 +

∑
𝑗≠𝑖 𝑛

2
𝑗

> 0

This shows that (𝑘 − 1)(ñ − 1) is an increasing function of 𝑛𝑖 given that all
other sample sizes are fixed.

For the unbalanced design, by noting that 𝑤𝑖 = 𝑛𝑖∕𝜎2
pop, we have

𝑄 = 1
𝜎2

pop

𝑘∑
𝑖=1

𝑛𝑖

(
𝑦𝑖 −

∑𝑘

𝑖=1𝑛𝑖𝑦𝑖∑𝑘

𝑖=1𝑛𝑖

)2

= 1
𝜎2

pop

{
𝑘∑

𝑖=1
𝑛𝑖𝑦

2
𝑖
−

(
∑𝑘

𝑖=1𝑛𝑖𝑦𝑖)
2∑𝑘

𝑖=1𝑛𝑖

}

As 𝑛𝑖 → ∞, 𝑦𝑖 converges in distribution to 𝑁(𝜇, 𝜏2). With 𝑦𝑖 ∼ 𝑁(𝜇, 𝜏2),
we have {(𝑛𝑖 −

∑𝑘

𝑖=1𝑛
2
𝑖
)∕
∑𝑘

𝑖=1𝑛𝑖}
−1𝐸

{∑𝑘

𝑖=1𝑛𝑖𝑦
2
𝑖
− (
∑𝑘

𝑖=1𝑛𝑖𝑦𝑖)
2∕
∑𝑘

𝑖=1𝑛𝑖

}
converges to 𝜏2. Additionally, when 𝑘 → ∞ and 𝑛𝑖 are of the same order,
{(𝑛𝑖 −

∑𝑘

𝑖=1𝑛
2
𝑖
)∕
∑𝑘

𝑖=1𝑛𝑖}
−2Var

{∑𝑘

𝑖=1𝑛𝑖𝑦
2
𝑖
− (
∑𝑘

𝑖=1𝑛𝑖𝑦𝑖)
2∕
∑𝑘

𝑖=1𝑛𝑖

}
→ 0.

Thus, as 𝑛 → ∞ and 𝑘 → ∞, 𝑄∕{(𝑘 − 1)(ñ − 1)} → 𝜏2∕𝜎2
𝑝𝑜𝑝

. ◽

Proof of (d). By (14), we have

𝐼2
A = max

{
𝑄 − (𝑘 − 1)

𝑄 + (𝑘 − 1)(ñ − 1)
, 0
}

= max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

{𝑄 − (𝑘 − 1)}∕(
∑𝑘

𝑖=1𝑤𝑖 −
∑𝑘

𝑖=1𝑤
2
𝑖
∕∑𝑘

𝑖=1𝑤𝑖)

{𝑄 − (𝑘 − 1)}∕
(∑𝑘

𝑖=1𝑤𝑖 −
∑𝑘

𝑖=1𝑤
2
𝑖
∕
∑𝑘

𝑖=1𝑤𝑖

)
+{(𝑘 − 1)ñ}∕

(∑𝑘

𝑖=1𝑤𝑖 −
∑𝑘

𝑖=1𝑤
2
𝑖
∕
∑𝑘

𝑖=1𝑤𝑖

) , 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where 𝜏2 = max{{𝑄 − (𝑘 − 1)}∕(

∑𝑘

𝑖=1𝑤𝑖 −
∑𝑘

𝑖=1𝑤
2
𝑖
∕
∑𝑘

𝑖=1𝑤𝑖), 0} and 𝜎̃2
𝑦
=

(𝑘 − 1)∕(
∑𝑘

𝑖=1𝑤𝑖 −
∑𝑘

𝑖=1𝑤
2
𝑖
∕
∑𝑘

𝑖=1𝑤𝑖). Note that the above equality holds
for any 𝑄 value, and in case 𝑄 < 𝑘 − 1, the both sides of the last equation
are zero and it still holds. ◽
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FIGURE F1 | Boxplots of the three statistics for the mean with 10,000 repetitions. The red boxes represent the 𝐼2
A statistic, the green boxes represent

the 𝐼2
ANOVA statistic, and the blue boxes represent the 𝐼2 statistic. The crosses on each box are the mean values of the 10000 repetitions. The solid lines

stand for the absolute heterogeneity ICCMA with 𝜎2
pop = 100.
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