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ABSTRACT
As a nonparametric randomness test, the positive and negative runs
test is widely used in practice due to the simplicity of its proce-
dures. The test can lose efficiency if the alternative distribution is
symmetrical at 0.5. In addition, the test can only be applied to test
the randomness of a sequence from the uniform distribution. In this
paper, we introduce an adaptive positive and negative runs test
method to maximize the power function by choosing the optimal
cut point. Also, the test is extended to check the randomness of
a sequence generated from any other given distributions. Further-
more, we derive the exact distribution and obtain the asymptotical
critical values of the proposed test statistics. Compared with the
existed test, the efficiency of the proposed adaptive positive and
negative runs test is competitive through simulation study.
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1. Introduction

In practice, it is common to consider whether a sample is generated randomly from the
standard uniform distribution. As one of the methods to test the randomness of a sample,
the positive and negative runs test, also called the binary runs test, belongs to a kind of inco-
herency test. The incoherency test consisting of the binary runs test and the up and down
runs test proposed by Taussky and Todd [1], as well as the multi-class runs test proposed
in the RAND Corporation’s million random number table [2], is used to test whether the
elements in a pseudo-random sample sequence come in random order. The positive and
negative runs test is used to test whether a sequence of numbers {ri : i = 1, 2, . . . , n}, each
of which comes from the interval (0, 1), is generated randomly from the standard uniform
distribution. The classic method sets a fixed cut point, 0.5, and divides the sequence into
two classes. The elements less than 0.5 are denoted as 0, while the elements larger than
0.5 are denoted as 1. Then, the hypothesis test problem is transformed into whether a 0/1
binary sequence comes in a random order.

In fact, the positive and negative runs test, which has the same idea of constructing the
test statistics as theWald–Wolfowitz runs test and theMood runs test, can be understood as
a special case developed from them. TheWald–Wolfowitz runs test proposed byWald and
Wolfowitz [3] is used to test whether two random sample sequences come from the same
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population. Based on the idea of the two-sampleWald–Wolfowitz test, Mood [4] proposed
a one-sample runs test examining whether the elements of a 0/1 binary sequence come in
random order. The sample sequence in the Mood runs test is a binary sequence, and the
null hypothesis is that the order of the sample sequence is random. The runs test is widely
used not only because of its ability to process both quantitative and qualitative data but
also because of its wide range of applications in various fields. For instance, in economics,
the runs test can be used to study the stock market [5]; in the productive process, it can be
used in quality control [6]; in academics, it can be used to solve randomness problems in
contingency table analysis [7] and regression analysis [8]; and in survival analysis, it can
also be applied in the hypothesis testing of the Cox proportional hazards model when the
data are randomly censored [9]. In spite of the extensiveness of its applications, though,
the main applications of the runs test focus on the following three aspects: the time-series
analysis [10,11], the symmetry test of the single-variable distribution [12,13], and the mul-
tivariate runs test, which is emergingmore recently. As for the multivariate approach, early
studies have mainly focused on exploring the construction approach of the multivariate
runs test [14]. However, nowadays, there are mainly two specific research directions in the
multivariate field: the randomness test of the multi-dimensional sequence [15,16] and the
symmetry test of the multi-dimensional distribution [15,17,18]. The development history
and application fields of the runs test are thoroughly introduced in Runs test: theory [19].

In this paper, we mainly focus on improving the positive and negative runs test by
selecting the cut point adaptively. According to the definition of the positive and negative
runs test, the cut point is fixed at 0.5, and the corresponding statistics are thus obtained.
Therefore, once the probability that the elements of the sequence lie within (0, 0.5) and
the probability that they lie within (0.5, 1) under the alternative hypothesis are the same,
the null hypothesis can lose efficiency. Hence, we propose an adaptive positive and neg-
ative runs test. On the basis of the alternative hypothesis, we seek an optimal cut point
accordingly, which means we allow a variable cut point depending on different alternative
hypotheses, rather than setting a fixed cut point, 0.5, all the time. The power of the adaptive
positive and negative runs test is improved significantly. Additionally, the adaptive method
is appropriate for more general null hypotheses, or rather, it is able to test whether a sample
sequence is randomly generated from an arbitrarily given distribution.

This paper is organized as follows. In Section 2, we introduce the test statistics and derive
their properties. In addition, two random variables are defined in order to simplify the pro-
cess of obtaining the asymptotical critical values of the rejection region. Also, the selection
method for the optimal cut point is introduced. In Section 3, we perform the numerical
simulation under different alternative hypotheses to illustrate the efficiency of the adaptive
test. Finally, we conclude this paper with a brief discussion in Section 4.

2. The adaptive positive and negative runs test

First, we will briefly introduce the classical positive and negative runs test. For a ran-
dom sequence {ri, i = 1, 2, . . . , n}, the null hypothesis is that the random sample sequence
follows the standard uniform distribution. Let ui = ri − a with a=0.5. We use positive
and negative signs to indicate whether ui ≥ 0 or not and obtain a corresponding data set
{r̃1, r̃2, . . . , r̃n}. Based on the sequence {r̃1, r̃2, . . . , r̃n} with two kinds of elements, we can
obtain the total number of runs, T. It is proved that the variable T follows the normal
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distribution with the mean 0.5n + 1 and the variance 0.25(n − 1). Under the alternative
hypothesis, if ri is symmetrical about 0.5, thenwe have P(ui <= 0.5) = P(ui > 0.5), which
means thatT follows the same distribution as under the null hypothesis. Thus, in this situa-
tion, the test cannot separate the alternative hypothesis from the null hypothesis, even if the
null hypothesis is not true. One idea is letting ui = ri − a with all the a ∈ (0, 1) to obtain
the corresponding total number of runs T. The distribution of T under the null and alter-
native hypotheses should be different for some a ∈ (0, 1). Below, we study the properties
of the test statistics T.

2.1. The properties of statistics under the null hypothesis

Based on the set {r̃i, i = 1, 2, . . . , n}, the continuous elements with the same sign between
two elements with different signs are defined as runs. The number of elements in a run
is denoted by l. The number of the runs with length l is denoted by Tl, and the total
number of runs is denoted by T = ∑

Tl. Let n0 = ∑n
i=1 I(ui ≥ 0) and n1 = ∑n

i=1 I(ui <

0) = n − n0. Under the condition that n0 = n or n1 = n, T=1 is the smallest value of
T. As for the largest value of T, the number of the runs with length 1 should be max-
imized and the corresponding value is 2min(n0, n1). Because there is another run with
lengthmax(n0, n1) − min(n0, n1), we have T = 2min(n0, n1) + 1. Thus, the range of total
number of runs T is 1 ≤ T ≤ 2min(n0, n1) + 1 for the given n0, n1.

Below, in order to study the property of statistic T, we first study the properties of
P{T = 2k | n1} and P{T = 2k + 1 | n1}. Given n1, there are Cn1

n combinations if we choose
n1 negative elements among the total n elements. If T=2k, then there are k negative runs
and k positive runs. For given n1 and k, there are Ck−1

n1−1 combinations if we choose k runs
among the sequence of n1 negative elements. Similarly, we have Ck−1

n−n1−1 combinations for
k runs among the sequence of n − n1 positive elements. Note that the first run of the n
elements can be from the n1 negative elements or n − n1 positive elements, then the total
number of combinations for T=2k is 2Ck−1

n−n1−1C
k−1
n1−1. Hence,

P{T = 2k|n1} = 2Ck−1
n−n1−1C

k−1
n1−1

Cn1
n

. (1)

When T=2k+1, there are k+1 negative runs and k positive runs or k negative runs and
k+1 positive runs. It can be similarly derived that

P{T = 2k + 1 | n1} = Ck−1
n−n1−1C

k
n1−1 + Ck

n−n1−1C
k−1
n1−1

Cn1
n

. (2)

Then we have,

P{T = 2k, n1} = P{T = 2k|n1}P{n1}
= (2Ck−1

n1−1C
k−1
n−n1−1/C

n1
n )an1(1 − a)n−n1Cn1

n

= 2Ck−1
n1−1C

k−1
n−n1−1a

n1(1 − a)n−n1 .
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When T=2k, there are k negative runs and k positive runs. Since the length of each run is
no less than 1, we have k ≤ min(n0, n1). Hence,

P{T = 2k} =
n−k∑
n1=k

2Ck−1
n1−1C

k−1
n−n1−1a

n1(1 − a)n−n1 . (3)

It can be similarly derived that

P{T = 2k + 1}

=
n−k∑

n1=k+1

Ck
n1−1C

k−1
n−n1−1a

n1(1 − a)n−n1 +
n−k−1∑
n1=k

Ck−1
n1−1C

k
n−n1−1a

n1(1 − a)n−n1 (4)

and P(T = 1) = an + (1 − a)n. The following theorem shows the properties of the statis-
tics T.

Theorem 2.1: Under the null hypothesis, the mean and variance of the statistics T are
E(T) = 2a(1 − a)(n − 1) + 1 = μ andVar(T) = 4(5 − 3n)a2(1 − a)2 + 2(2n − 3)a(1 −
a) = σ 2, respectively. If a=0.5 (which is defined in the classical positive and negative runs
test), T obeys the normal distribution asymptotically. If a �= 0.5, T does not converge to any
smooth continuous distribution.

According to Theorem 2.1, if a �= 0.5, the statistics T diverge. Therefore, we plot
Figure 1 for intuitive illustration under the condition that n=500 and a = 0.1, 0.3, 0.5.
From Figure 1, we can see that the probability of T being odd and even is quite different
when a �= 0.5. The farther a departs from 0.5, the more separative the probability of T is
from being odd to being even. Note that the probability of T is symmetrical about 0.5. We
only show the case of a ≤ 0.5.

Since it is impossible to compute the asymptotical critical value according to the asymp-
totic distribution of T, one idea is to make use of the exact distribution of T in Equations
(3) and (4) as follows.

Theorem 2.2: Under the null hypothesis, the critical values of statistics T are

t̃1 = min
x

{
x :

x∑
k=1

P(T = k) > α/2

}
,

t̃2 = max
x

{
x :

x∑
k=1

P(T = k) < 1 − α/2

}
,

where the range of x is 1 ≤ x ≤ 2min(n0, n1) + 1. The null hypothesis should be rejected
when T < t̃1 or T > t̃2.

Since the expressions for solving t̃1 and t̃2 are too complicated based on Theorem 2.2,
any explicit formula of the critical values cannot be derived. Based on Theorem 2.1, we
know that when a �= 0.5, T does not converge to any smooth continuous distribution. In



1318 J. CUI ET AL.

50 100 150 200 250 300

T

0

0.01

0.02

0.03

0.04

0.05

0.06
pr

ob
ab

ili
ty

Probability Distribution Function (PDF)

a=0.1

a=0.3
a=0.5

Figure 1. The probability value for T with n= 500, and the left to right three figures are correspond-
ing to a= 0.1,0.3,0.5. The ‘∗’ and ‘o’ denote P(T = 2k) (k = 1, 2, . . . , �n/2�) and P(T = 2k + 1) (k =
0, 1, 2, . . . , 	n/2
 − 1), respectively.

order to study the asymptotical property of the statistics, we introduce two discrete random
variables T1 and T2, whose probability is corresponding to the standardized probability of
T being odd and even values. That is, T1 is defined as

P(T1 = 2k) = P(T = 2k)
θ1

, k = 1, 2, . . . ,
⌊n
2

⌋
.

Here, 	x
 stands for x round-down, and

θ1 =
	n/2
∑
k=1

P{T = 2k} =
	n/2
∑
k=1

n−k∑
n1=k

2Ck−1
n1−1C

k−1
n−n1−1a

n1(1 − a)n−n1

= 2a(1 − a)

⎧⎨
⎩

	n/2
∑
n1=1

n1∑
k=1

Ck−1
n1−1C

k−1
n−n1−1a

n1−1(1 − a)n−n1−1

+
n−1∑

n1=	n/2
+1

n−n1∑
k=1

Ck−1
n1−1C

k−1
n−n1−1a

n1−1(1 − a)n−n1−1]

⎫⎬
⎭

= 2a(1 − a)

⎧⎨
⎩

	n/2
∑
n1=1

Cn1−1
n−2 an1−1(1 − a)n−n1−1 +

n−1∑
n1=	n/2
+1

Cn1−1
n−2 an1−1(1 − a)n−n1−1

⎫⎬
⎭

= 2a(1 − a) (5)
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is the standardized value so that T1 is a discrete variable. Another discrete variable T2 is
defined as

P(T2 = 2k + 1) = P(T = 2k + 1)
θ2

, k = 0, 1, . . . ,
⌈n
2

⌉
− 1.

Here, �x� stand for x round-up, and θ2 = ∑�n/2�−1
k=0 P{T = 2k + 1} is a standardized value.

Note that θ1 = 2a(1 − a) and θ1 + θ2 = 1, we have θ2 = 1 − θ1 = a2 + (1 − a)2.
The means E(T1) and E(T2) can be derived as follows:

μ1 := E(T1) =
	n/2
∑
k=1

2kP(T1 = 2k) = 2(n − 3)a(1 − a) + 2, (6)

μ2 := E(T2) =
�n/2�−1∑
k=0

(2k + 1)P(T2 = 2k + 1)

= (−4(n − 3)a4 + 8(n − 3)a3 − 6(n − 3)a2

+ 2(n − 3)a + 1)/(a2 + (1 − a)2). (7)

In the following, we give the derivation of the equations in Equations (6) and (7). Denote
fk(a) := P{T1 = 2k} = ∑n−k

n1=k C
k−1
n1−1C

k−1
n−n1−1a

n1−1(1 − a)n−n1−1. By Taylor’s expansions
at a=0.5, we have

P{T1 = 2k} =
n−2∑
m=0

·f (m)

k (0.5)
(a − 0.5)m

m!
.

Hence,

E(T1) =
	n/2
∑
k=1

2kP{T1 = 2k} =
n−2∑
m=0

	n/2
∑
k=1

2k · f (m)

k (0.5)
(a − 0.5)m

m!
.

By complicated derivation, we have
∑	n/2


k=1 2k · f (m)

k (0.5)((a − 0.5)m/m!) = 0 for m=1
andm>2. According to the fact that

f (0)k (0.5) = C2k−1
n−1 0.5n−2,

f (2)k (0.5) =
n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−10.5

n−2 · [4(n2 − n + 2) − 16nn1 + 16n21],

and Lemma 5.1 in Section 5, we have

E(T1) =
	n/2
∑
k=1

2k · f (0)k (0.5) +
	n/2
∑
k=1

2k · f
(2)
k (0.5)

2!
(a − 0.5)2

= 0.5(n + 1) − 2(n − 3)(a − 0.5)2

= 2(n − 3)a(1 − a) + 2.
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As for E(T2) in Equation (7), according to the expression of E(T) in Theorem 2.1 and
E(T) = E(T1) · θ1 + E(T2) · θ2, we have E(T2) = (−4(n − 3)a4 + 8(n − 3)a3 − 6(n −
3)a2 + 2(n − 3)a + 1)/(a2 + (1 − a)2).

For the variances Var(T1) and Var(T2), note that

E(T2
1) =

	n/2
∑
k=1

(2k)2P(T1 = 2k)

= ((8a + (24n − 80)a2 + (8n2 − 120n + 304)a3

+ (−24n2 + 240n − 552)a4 + (24n2 − 216n + 480)a5

+ (−8n2 + 72n − 160)a6))/(2a(1 − a)),

E(T2
2) =

�n/2�−1∑
k=0

(2k + 1)2P(T2 = 2k + 1)

= (1 + (8n − 18)a + (4n2 − 52n + 114)a2 + (−16n2 + 160n − 352)a3

+ (28n2 − 260n + 576)a4 + (−24n2 + 216n − 480)a5

+ (8n2 − 72n + 160)a6)/(a2 + (1 − a)2),

we have

σ 2
1 := Var(T1) = E(T2

1) − (E(T1))
2,

σ 2
2 := Var(T2) = E(T2

2) − (E(T2))
2.

The theorem below illustrates the properties of the random variables T1, T2 under the null
hypothesis. Based on the results, we obtain the limiting critical values of the test statistics.

Theorem 2.3: Under the null hypothesis, variables T1 and T2 obey the normal distribu-
tions N(μ1, σ 2

1 ) and N(μ2, σ 2
2 ), respectively. Asymptotically, we have P(t1 < T < t2) = α

for t1 ≈ −σ zα/2 + μ and t2 ≈ σ zα/2 + μ, where zα/2 isα/2 quantile of the standard normal
distribution, μ = E(T) and σ = (Var(T))1/2.

For an intuitive expression, under the condition of n=500 and a=0.1,0.3,0.5, we can
plot the histograms of the randomvariablesT1,T2 and corresponding normal density func-
tionN(μ1, σ 2

1 ) andN(μ2, σ 2
2 ) in Figure 2. It is shown that the normal density function fits

the histograms very well.

2.2. The properties of statistics under the alternative hypothesis

Weassume the alternative hypothesis is thatH1, the random sample sequence r1, r2, . . . , rn,
follows any distribution on (0, 1) except the standard uniform distribution. Let p = P(ui <

0), with ui = ri − a. Then, the corresponding properties can be similarly derived. Under
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Figure 2. When a= 0.1,0.3,0.5, the probability density functions of T1, T2 (n= 500).

the alternative hypothesis, we have

μ̃1 := E(T1)

= 4(n − 3)p4 − 8(n − 3)p3 + 4(n − 4)p2 + 4p
2p(1 − p)

,

μ̃2 := E(T2)

= −4(n − 3)p4 + 8(n − 3)p3 − 6(n − 3)p2 + 2(n − 3)p + 1
p2 + (1 − p)2

,

σ̃ 2
1 := Var(T1)

= 8p + (24n − 80)p2 + (8n2 − 120n + 304)p3

2p(1 − p)

+ (−24n2 + 240n − 552)p4 + (24n2 − 216n + 480)p5 + (−8n2 + 72n − 160)p6

2p(1 − p)

−
(
4(n − 3)p4 − 8(n − 3)p3 + 4(n − 4)p2 + 4p

2p(1 − p)

)2

,

σ̃ 2
2 := Var(T2)

= 1 + (8n − 18)p + (4n2 − 52n + 114)p2 + (−16n2 + 160n − 352)p3

p2 + (1 − p)2

+ (28n2 − 260n + 576)p4 + (−24n2 + 216n − 480)p5 + (8n2 − 72n + 160)p6

p2 + (1 − p)2

−
(−4(n − 3)p4 + 8(n − 3)p3 − 6(n − 3)p2 + 2(n − 3)p + 1

p2 + (1 − p)2

)2

.
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In the following theorem, we derive the asymptotic properties of the test statistics under
the alternative hypothesis.

Theorem 2.4: Under the alternative hypothesis that the random sample sequence
r1, r2, . . . , rn does not follow the standard uniform distribution, variables T1 and T2 obey
asymptotically the normal distributions N(μ̃1, σ̃ 2

1 ) and N(μ̃2, σ̃ 2
2 ), respectively. Based on the

results, the asymptotical power of the statistics T is

Q(a) = 1 + �

(−σ zα/2 + μ − μ̃1

σ̃1

)
· θ̃1 + �

(−σ zα/2 + μ − μ̃2

σ̃2

)
· θ̃2

− �

(
σ zα/2 + μ − μ̃1

σ̃1

)
· θ̃1 − �

(
σ zα/2 + μ − μ̃2

σ̃2

)
· θ̃2. (8)

Here, θ̃1 = 2p(1 − p), θ̃2 = p2 + (1 − p)2, and �(·) stands for the standard normal distri-
bution function.

According to Theorem 2.4, one option is to select an optimal a that maximizes the
function Q(a) in Equation (8). Hence, we denote the optimal a as ã, which is obtained
by

ã = max
a

Q(a). (9)

Since the parameters μ̃1, μ̃2, σ̃1 and σ̃2 in Equation (9) contain the unknown parameter p,
when a is given, we use the estimator p̂ = n−1 ∑n

j=1 I(uj < 0) of p to get the corresponding
estimators of μ̃1, μ̃2, σ̃1, and σ̃2. Here, I(·) is the indicative function.

To determine the optimal a, first we consider obtaining the estimate of ã using the
following Newton–Raphson algorithm:

ai+1 = ai − (Q′′(ai))−1Q′(ai). (10)

Here, Q′(a) is the first derivative of Q(a), and Q′′(a) is the second derivative of Q(a). The-
oretically, the parameter p is a function of a and p is contained in Q(a). Hence, in order to
obtain the derivatives Q′(a) and Q′′(a), an explicit form of p as a function of a is needed.
But in practice, according to the definition of p, p = P(ri < a), it is not easy to derive the
explicit form of p, since the explicit form of the random sample sequence’s distribution
under the alternative hypothesis is unknown. Therefore, the Newton–Raphson algorithm
does notwork here. Instead, we estimate the parameters using p = n−1 ∑n

j=1 I(uj < 0) and
use the grid method to obtain the optimal a from the definition of Q(a) in Equation (9).

2.3. The null hypothesis is any other specific distribution

In this section, we extend the statistics to examine whether the random sample sequence
r1, r2, . . . , rn follows an arbitrary distribution. In otherwords, the null hypothesis is thatH0:
the random sample sequence r1, r2, . . . , rn follows the distribution with density function
g(x) on (x1, x2), versus the alternative hypothesisH1, which states that the random sample
sequence r1, r2, . . . , rn does not follow the density function g(x) on (x1, x2). Here, x1, x2 can
be−∞ or+∞. Without loss of generality, we also let ui = ri − a, a ∈ (x1, x2) and S be the
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total number of runs. It can be derived similarly as in the case of the uniform distribution
that the asymptotical rejection region isWS = {S : S < s1, or S > s2}, where

s1 = −σszα/2 + μs, s2 = σszα/2 + μs.

Here,

μs := E(S) = 2G0(a)(1 − G0(a))(n − 1) + 1,

σ 2
s := Var(S) = 4(5 − 3n)G0(a)2(1 − G0(a))2 + 2(2n − 3)G0(a)(1 − G0(a)),

where n0 = ∑n
i=1 I(ui ≥ 0), n1 = ∑n

i=1 I(ui < 0) = n − n0, and G0(a) = P(ui ≤ 0)
under the null hypothesis. As for the derivation of μs and σ 2

s , Theorem 2.1 shows the
expectation and variance of T when the null hypothesis is uniform distribution on [0, 1],
in which a is the probability for ui < 0. When the null hypothesis is any other specific dis-
tribution, the probability for ui < 0 is G0(a). Under H0, we replace a as G0(a) and obtain
the corresponding μs and σ 2

s by following the proof under null hypothesis.
Similar to the case of the uniform distribution, we define two random variables S1 and

S2 with probability P(S1 = 2k) = P(S = 2k)/θ̃s1 for k = 1, 2, . . . , 	n/2
 and P(S2 = 2k +
1) = P(S = 2k + 1)/θ̃s2 for k = 0, 1, . . . , �n/2� − 1. Denote μ̃s1 = E(S1), μ̃s2 = E(S1),
σ̃ 2
s1 = Var(S1) and σ̃ 2

s2 = Var(S2) under the alternative hypothesis. It can also be derived
that the power under the alternative hypothesis is

Q(a) = 1 + �

(−σszα/2 + μs − μ̃s1

σ̃s1

)
· θ̃s1 + �

(−σszα/2 + μs − μ̃s2

σ̃s2

)
· θ̃s2

− �

(
σszα/2 + μs − μ̃s1

σ̃s1

)
· θ̃s1 − �

(
σszα/2 + μs − μ̃s2

σ̃s2

)
· θ̃s2. (11)

Here, θ̃s1 = 2p(1 − p), θ̃s2 = p2 + (1 − p)2.
As for obtaining themaximumQ(a) in Equation (11), if the explicit form of the random

sample sequence’s distribution denoted asG1(·) under the alternative hypothesis is known,
we can use the theoretical optimal cut point p = G1(a). Otherwise, we use the estimator
of p, p̂ = n−1 ∑n

j=1 I(uj < 0), instead. In this paper, the grid method is applied to obtain
the optimal a, since the alternative hypothesis is unknown in most cases.

3. Numerical analysis

In this section, we mainly use simulation analysis to study the efficiency of the proposed
method. Different examples are investigated here to illustrate the efficiency of the proposed
test.

Example 3.1: Thenull hypothesis isH0 and reads as follows. The random sample sequence
r1, r2, . . . , rn follows the standard uniform distribution. The alternative hypothesis isH1. It
states that the random sample sequence r1, r2, . . . , rn follows the Beta(2,2) distribution on
(0, 1). Also, the size of the proposed test is computed.

First, we plot the functionQ(a) in Equation (8) to illustrate the consistency ofQ(a) and
its estimators in Figure 3 with sample size n=50 and 100. The figures for (a), (b), and (c)
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Figure 3. When n= 50,100, (a) the function Q(a) with p = P(r < a); (b) the function Q(a) with the
estimator p̂ = n−1 ∑n

i=1 I(ri < a); and (c) the practical power computed by rejection regions.

correspond to the function Q(a) with p = P(r < a), p̂ = n−1 ∑n
i=1 I(ri < a), and that the

Q̂(a) estimated by Q̂(a) = P̂(T < t̂1, or T > t̂2). Here, t̂1, t̂2, and P̂(·) are the estimators of
t1, t2, and P(·), respectively. As shown in Figure 3, the estimators of Q(a) can approximate
the true function verywell. Therefore, it is reasonable to estimate the optimal ã based on the
estimator ofQ(a) with the estimated p. The larger the sample size is, the more efficient the
estimators Q̂(a) will be. In addition, since P(ri < a) + P(ri < 1 − a) = 1, the test power
is symmetrical with respect to a=0.5, which means that the optimal amay not be unique.
The powers are the same for any optimal a if it is not unique.

Table 1 presents type I error for the uniform distribution over (0, 1), from which we can
see that the size of the proposed test satisfies the nominal level constraint. Table 2 presents
the simulation results with different sample sizes for n=20,30,50,100,200,500, and 1000.
The corresponding test powers of classical positive and negative runs tests with a=0.5
and the K–S test are shown for comparison. From Table 2, we can see that the power is
more efficient for the proposed method. However, the classical positive and negative runs

Table 1. Comparison of type I error (H0 : U(0, 1), H1 : U(0, 1)).

n Adaptive test Classical test K–S test Optimal a

20 0.0518 0.0607 0.0524 0.1940
30 0.0503 0.0570 0.0507 0.1870
50 0.0527 0.0467 0.0501 0.1080
100 0.0453 0.0470 0.0508 0.1060
200 0.0545 0.0464 0.0504 0.0350
500 0.0513 0.0472 0.0522 0.0220
1000 0.0443 0.0520 0.0531 0.0260
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Table 2. Comparison of power (H0 : U(0, 1), H1 : Be(2, 2)).

n Adaptive test Classical test K–S test Optimal a

20 0.1493 0.0657 0.0642 0.2520
30 0.2455 0.0587 0.1079 0.2330
50 0.3120 0.0450 0.2232 0.1690
100 0.8299 0.0467 0.6249 0.1340
200 0.9859 0.0464 0.9772 0.1060
500 1.0000 0.0460 1.0000 0.0820
1000 1.0000 0.0520 1.0000 0.0840

test cannot detect the alternative hypothesis due to the fact that the density function of
Be(2, 2) is symmetrical about 0.5. The power of the classical tests is only about 0.05 under
the alternative hypothesis, which is much worse than that of the adaptive tests. With the
same sample, the power of the proposed test is more efficient than K–S test as well.

Example 3.2: Thenull hypothesis isH0 and reads as follows. The random sample sequence
r1, r2, . . . , rn follows the standard uniform distribution. The alternative hypothesis isH1. It
states that the random sample sequence r1, r2, . . . , rn follows the distribution with density
function f (x) = (π/2) cos(π/2)x, x ∈ (0, 1).

We use this example to illustrate the power performance when the density function
under the alternative hypothesis is a cosine function, which means that the density is a
frequency function. The results are presented in Table 3, from which we can see that the
trend of the simulation results is very similar to that of Example 3.1, and the adaptive test
is more efficient than classical test and K–S test under all circumstances.

Example 3.3: Thenull hypothesis isH0 and reads as follows. The random sample sequence
r1, r2, . . . , rn follows the standard normal distributionN(0, 1). The alternative hypothesis is
H1. It states that the random sample sequence r1, r2, . . . , rn follows the normal distribution
N(μ, 1)(μ �= 0).

In this example, the density function under the null hypothesis is the normal distribu-
tionN(0, 1)with domain (−∞,+∞) instead of (0, 1).We fix n=30 and gradually increase
μ to pull it away from the null hypothesis. Then, we compute the test power. Note that
the classical test is proposed for the null hypothesis when the random sample sequence
is from the uniform distribution on (0, 1). Thus, we compare the adaptive test proposed
in this paper to the classical test with the fixed cut point a=0.5. As the simulation result

Table 3. Comparison of power (H0 : U(0, 1), H1 : f (x) = (π/2)
cos(π/2)x).

n Adaptive test Classical test K–S test Optimal a

20 0.6429 0.1059 0.5097 0.9740
30 0.8196 0.1281 0.6739 0.9710
50 0.9298 0.1306 0.8832 0.9550
100 0.9954 0.2033 0.9945 0.9540
200 1.0000 0.3502 1.0000 0.9380
500 1.0000 0.6712 1.0000 0.9220
1000 1.0000 0.9258 1.0000 0.9170
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Table 4. Comparison of power (n= 30) (H0 : N(0, 1), H1 : N(μ, 1)).

μ Adaptive test Classical test K–S test Optimal a

0.1 0.0697 0.0434 0.0670 1.5090
0.2 0.1156 0.0506 0.1587 1.4120
0.3 0.3276 0.0532 0.2876 1.5890
0.4 0.4094 0.0658 0.4701 1.4080
0.5 0.4128 0.0716 0.6537 1.4750
0.6 0.5306 0.0634 0.8107 1.4940
0.7 0.6435 0.0514 0.9132 1.4900
0.8 0.7780 0.0485 0.9661 1.5990
0.9 0.8092 0.0477 0.9894 1.5180
1.0 0.8853 0.0465 0.9983 1.5290

shows in Table 4, we find that as μ moves from 0.0 to 1.0, the power of the classical test
increases first and then decreases, reaching its maximum value at μ = 0.5. However, the
maximum test power is only 0.0716, which is clearly not ideal. In addition, it is obvious that
the power of the classical test is almost symmetrical with respect toμ = 0.5, due to the fact
that when a=0.5, p = P(ri < a) and 1−p are the same with respect toμ = 0.5. Thus, only
whenμ = 0.5 and p=1−p=0.5, the random sample sequence is divided most effectively,
and the total number of runs T and the test power reach their maximum. However, the
adaptive test solves this problem by using the flexible a. As μ grows larger, which means
that the alternative hypothesis departs from the null hypothesis gradually, the test power
becomes larger and is always better than that of the corresponding classical test with the
same μ. Under this circumstance, the proposed test is less efficient than K–S test.

Example 3.4: The null hypothesis is H0 and reads as follows. The random sample
r1, r2, . . . , rn is from the chi-square distribution χ2(1). The alternative hypothesis is H1.
It states that the random sample r1, r2, . . . , rn is from the truncated normal distribution
with density function f (x) = φ(x − μ)/(1 − �(−μ))(x > 0).

The domains of the distributions under the null and alternative hypotheses are both
(0,+∞), which are different from previous examples. In this example, for the fixed n,
we increase μ to pull it away from the null hypothesis, and then compute the test power.
According to the simulation results presented in Table 5, we find that as μ moves from 0.0
to 1.0, both the power of the classical test with a=0.5 and that of the adaptive test increase.

Table 5. Comparison of Power (H0 : χ2(1), H1 : N(μ, 1)(x ≥ 0)).

n= 30 n= 100

μ Adaptive test Classical test K–S test Optimal a μ Adaptive test Classical test K–S test Optimal a

0.0 0.5647 0.0883 0.5208 0.1430 0.0 0.9923 0.0854 0.9970 0.0700
0.1 0.5989 0.0912 0.5961 0.1530 0.1 0.9951 0.1120 0.9990 0.0810
0.2 0.6388 0.0998 0.6732 0.1690 0.2 0.9986 0.1674 0.9998 0.0760
0.3 0.6891 0.1403 0.7481 0.1700 0.3 0.9988 0.2523 0.9998 0.0990
0.4 0.7158 0.1885 0.8248 0.1900 0.4 0.9994 0.3624 1.0000 0.1020
0.5 0.7592 0.2633 0.8721 0.1980 0.5 0.9996 0.4843 1.0000 0.1110
0.6 0.7707 0.2831 0.9195 0.2060 0.6 0.9998 0.6021 1.0000 0.1190
0.7 0.8752 0.3504 0.9464 0.2120 0.7 0.9999 0.7361 1.0000 0.1230
0.8 0.8859 0.4421 0.9709 0.2540 0.8 1.0000 0.8386 1.0000 0.1630
0.9 0.9073 0.4909 0.9859 0.2690 0.9 1.0000 0.9215 1.0000 0.1680
1.0 0.9432 0.5912 0.9916 0.2550 1.0 1.0000 0.9617 1.0000 0.1700
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The adaptive test can always reject the null hypothesis more effectively than the classical
test under all circumstances. It can be also seen that when the sample size n is small, the
power of the proposed test is less efficient than K–S test. But the powers of the proposed
test are almost as efficient as K–S test with large sample size.

According to the simulation study results described, we believe that the performance
of the adaptive test is more powerful than that of the classical test under all of the null
and alternative hypothesis scenarios we tested. The adaptive test can quickly detect the
differences when the alternative hypothesis departs from the null hypothesis. In addition,
regarding testing for the uniform distribution over (0, 1), with the same sample, the power
of the proposed test is significantly more efficient than K-S test.

4. Conclusion

Motivated by the idea of optimizing the cut point a, this paper improves the classical
positive and negative runs test. The adaptive positive and negative runs test relaxes the
restriction of the cut point being fixed at 0.5 in the classicalmethod. The idea is to divide the
sample sequence {ri} using an uncertain cut point a and obtain the corresponding statis-
tics T first. Additionally, by defining two new, random variables, this paper derives and
demonstrates the exact and asymptotic critical values of the rejection region of the statistics
T. Eventually, the theoretical optimal cut point a is selected by maximizing the asymptoti-
cal power. However, note that the alternative hypothesis is unknown in most cases, so we
estimate the cut point a(a ∈ (0, 1)) using the grid method to let a approach the theoreti-
cally optimal value, which leads the actual test power to approach the theoreticalmaximum
value. Numerical study has thus verified the efficiency of the adaptive positive and negative
runs test.

5. Proof of the theorems

In order to prove the theorems, we first introduce a lemma.

Lemma 5.1: This lemma shows the property of
∑n−k

n1=k C
k−1
n1−1C

k−1
n−n1−1n

m
1 for m =

0, 1, . . . , n − 2. It can be derived that
n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1 = C2k−1

n−1 , (12)

n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1n1 = n

2
C2k−1
n−1 , (13)

n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1n

2
1 =

(
− k
2(2k + 1)

n + k + 1
2(2k + 1)

n2
)
C2k−1
n−1 , (14)

n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1n

3
1 =

(
− 3k
4(2k + 1)

n2 + k + 2
4(2k + 1)

n3
)
C2k−1
n−1 , (15)
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n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1n

4
1

= (k + 2)(k + 3)n4 − 6k(k + 2)n3 + (3k − 1)kn2 + 2k2n
4(2k + 1)(2k + 3)

C2k−1
n−1 , (16)

n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1n

m
1

=
n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1nn

m−1
1 − k2

n−k∑
n1=k

Ck
n1C

k
n−n1(nn1 + n + 1)nm−4

1

+ k2(k + 1)2
n−k∑
n1=k

Ck+1
n1+1C

k+1
n−n1+1n

m−4
1 . (17)

Based on the above equations, the sumnotation in
∑n−k

n1=k C
k−1
n1−1C

k−1
n−n1−1n

m
1 can be simplified

for any m.

Proof for Lemma 5.1: For provingEquation (12), letX1,Y1 be independent Pascal random
variables with X1,Y1 ∼ Pascal(k, 0.5), we have Z1 = X1 + Y1 ∼ Pascal(2k, 0.5). That is

P(Z1 = n) = C2k−1
n−1 0.52k0.5n−2k. (18)

On the other hand, based on the convolution formula, it can be derived that

P(Z1 = n) = P{X1 + Y1 = n}

=
n−k∑
n1=k

P{X1 = n1}P{Y1 = n − n1}

=
n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−10.5

2k0.5n−2k. (19)

Hence, we have
∑n−k

n1=k C
k−1
n1−1C

k−1
n−n1−1 = C2k−1

n−1 based on Equations (18) and (19).
For proving Equation (13), it can be derived that

n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1n1 = n

2

n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1 = n

2
C2k−1
n−1 .

As for Equation (14), based on Equation (13), it can be proved that

n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1n

2
1

=
n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1nn1 −

n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1n1(n − n1)
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= n2

2
C2k−1
n−1 − k2

n−k∑
n1=k

Ck
n1C

k
n−n1

= n2

2
C2k−1
n−1 − kn(n + 1)

2(2k + 1)
C2k−1
n−1

=
(

− k
2(2k + 1)

n + k + 1
2(2k + 1)

n2
)
C2k−1
n−1 .

As for Equations (15) and (16), we can derive it by following the proof for Equation (14).
For Equation (17), we have

n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1n

m
1

=
n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1nn

m−1
1 −

n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1n

m−1
1 (n − n1).

Since

n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1n

m−1
1 (n − n1)

= k2
n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1n

m−2
1

= k2
⎛
⎝ n−k∑

n1=k

Ck−1
n1−1C

k−1
n−n1−1(nn1 + n + 1)nm−4

1

−
n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−1(n1 + 1)(n − n1 + 1)nm−4

1

⎞
⎠

= k2
n−k∑
n1=k

Ck
n1C

k
n−n1(nn1 + n + 1)nm−4

1 − k2(k + 1)2
n−k∑
n1=k

Ck+1
n1+1C

k+1
n−n1+1n

m−4
1 ,

Equation (17) is proved. �

Proof for Theorem 2.1: Based on Equations (3) and (4), we have

E(T | n1) =
n∑

m=1
mP(T = m | n1) = 2n1(n − n1)

n
+ 1, (20)
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E(T2 | n1) =
n∑

m=1
m2P(T = m | n1)

= 4n1(n − n1)(n1 − 1)(n − n1 − 1) + 2n1(n − n1)(4n − 5)
n(n − 1)

+ 1. (21)

Below, we give the proof for E(T | n1) in Equation (20). Evidently, E(T | n1) = 1 when
n1 = 0. Under the condition that 0 < n1 < n0, it can be derived that

E(T | n1) =
n1∑
k=1

2k · P{T = 2k | n1} +
n1∑
k=1

(2k + 1) · P{T = 2k + 1 | n1}

=: E1 + E2. (22)

According to the definition of P{T = 2k | n1} in Equation (1), note that (k − 1)Ck−1
n1−1 =

(n1 − 1)Ck−2
n1−2,

∑n1
k=2 C

k−1
n0−1C

k−2
n1−2 = Cn0−2

n1+n0−3 and
∑n1

k=1 C
k−1
n0−1C

k−1
n1−1 = Cn0−1

n0+n1−2, we
have

E1 =
n1∑
k=1

4(k − 1) · C
k−1
n0−1C

k−1
n1−1

Cn1
n

+
n1∑
k=1

4 · C
k−1
n0−1C

k−1
n1−1

Cn1
n

= 4(n1 − 1) · Cn0−2
n−3 + 4Cn0−1

n−2

Cn1
n

. (23)

As for the expression E2, based on the equations
∑n1−1

k=1 k · Ck−1
n0−1C

k
n1−1 = (n1 −

1)Cn0−1
n0+n1−3,

∑n1
k=1 k · Ck

n0−1C
k−1
n1−1 = (n0 − 1)Cn1−1

n0+n1−3,
∑n1−1

k=1 Ck−1
n0−1C

k
n1−1 = Cn0

n0+n1−2
and

∑n1
k=1 C

k
n0−1C

k−1
n1−1 = Cn1

n0+n1−2, we have the following result by recalling the definition
of P{T = 2k + 1 | n1} in Equation (2):

E2 =
n1−1∑
k=1

2k · C
k−1
n0−1C

k
n1−1 + Ck

n0−1C
k−1
n1−1

Cn1
n

+
n1−1∑
k=1

Ck−1
n0−1C

k
n1−1 + Ck

n0−1C
k−1
n1−1

Cn1
n

+ (2n1 + 1)
Cn1
n0−1C

n1−1
n1−1

Cn1
n

= 2(n1 − 1) · Cn0−1
n−3 + 2(n0 − 1)Cn1−1

n−3 + Cn1−2
n−2 + Cn0−2

n−2

Cn1
n

. (24)

Hence, according to expressions (22), (23) and (24), we have

E(T | n1) = 2n1(n − n1)
n

+ 1. (25)

As for n1 = n0, we have

E(T | n1) =
n1∑
k=1

2k · P{T = 2k | n1} +
n1∑
k=2

(2k − 1) · P{T = 2k − 1 | n1}.

The same result can be derived as that in Equation (25) by a similar way. Under the con-
dition that 0 ≤ n1 ≤ n0, note that the symmetrical property of n0 and n1 in Equation
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(22), hence Equation (25) holds for any n0 and n1. The E(T2 | n1) in Equation (21) can
be similarly derived. After a complicated calculation, we have

E(T2 | n1) =
n1∑
k=1

(2k)2 · P{T = 2k | n1} +
n1∑
k=1

(2k + 1)2 · P{T = 2k + 1 | n1}

= 4n1(n − n1)(n1 − 1)(n − n1 − 1) + 2n1(n − n1)(4n − 5)
n(n − 1)

+ 1.

To computeE(T) andVar(T), we study the properties of the randomvariablen1’s the first to
fourth moments. Since n1 = ∑n

i=1 I(ui < 0), which follows binomial distribution B(n, a),
we have

E(n1) = na,

E(n21) = na + (n2 − n)a2,

E(n31) = na + 3n(n − 1)a2 + n(n − 1)(n − 2)a3,

E(n41) = na + 7n(n − 1)a2 + 6n(n − 1)(n − 2)a3 + n(n − 1)(n − 2)(n − 3)a4.

Based on the results above and that in Equation (20), we have

E(T) = E(E(T | n1)) = E
(
2n1(n − n1)

n
+ 1

)

= 2a(1 − a)(n − 1) + 1,

E(T2) = E(E(T2 | n1))

= E
(
4n1(n − n1)(n1 − 1)(n − n1 − 1) + 2n1(n − n1)(4n − 5)

n(n − 1)
+ 1

)

= 4(n − 2)(n − 3)a2(1 − a)2 + 2(4n − 5)a(1 − a) + 1.

As a result,

Var(T) = E(T2) − (E(T))2

= 4(n − 2)(n − 3)a2(1 − a)2 + 2(4n − 5)a(1 − a)

+ 1 − (2a(1 − a)(n − 1) + 1)2

= 4(5 − 3n)a2(1 − a)2 + 2(2n − 3)a(1 − a).

Below, we verify the asymptotical properties of the statistics T with a=0.5. Recall the
definition of the distribution of T in Equations (3) and (4).

Thus, based on Equation (12) in Lemma 5.1, when a=0.5, we have

P{T = 2k} =
n−k∑
n1=k

2Ck−1
n1−1C

k−1
n−n1−10.5

n1(1 − 0.5)n−n1 = C2k−1
n−1 0.5n−1,
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and similarly,

P{T = 2k + 1}

=
n−k∑

n1=k+1

Ck
n1−1C

k−1
n−n1−10.5

n10.5n−n1 +
n−k−1∑
n1=k

Ck−1
n1−1C

k
n−n1−10.5

n10.5n−n1

= C2k
n−10.5

n−1.

Hence, T − 1 ∼ B(n − 1, 0.5). When n → ∞, the binomial distribution B(n − 1, 0.5)
asymptotically tends to normal distribution with the mean 0.5(n − 1) and the variance
0.25(n − 1). As a result, the statistics T asymptotically follows N(0.5(n + 1), 0.25(n − 1).

When a �= 0.5, denote k0 = argmaxk{P(T = 2k), k = 1, 2, . . . , 	n/2
}, and we have
P(T = 2k0) − P(T = 2k0 + 1) does not converge to 0 as n → ∞. As a result, the statistic
Tdoes not converge to any smooth continuous distribution when a �= 0.5. �

Proof for Theorem 2.3: In order to prove that T1 is asymptotical normal distribution with
mean μ1 and variance σ 2

1 , we only need to derive that

fk(a) := P{T1 = 2k} ∼= gk(a) =:
2√
2πσ1

exp
(

− (2k − μ1)
2

2σ 2
1

)
,

where μ1 = 2(n − 3)a(1 − a) + 2, σ 2
1 = 4a(1 − a)(3na2 − 3na + n − 11a2 + 11a − 3).

Based on the Taylor expansion, we have

fk(a) =
n−2∑
m=0

f (m)

k (0.5)
(a − 0.5)m

m!
, gk(a) =

+∞∑
m=0

g(m)

k (0.5)
(a − 0.5)m

m!
.

In the following, we prove that f (m)

k (0.5) ∼= g(m)

k (0.5) form = 0, 1, 2, . . . , n − 2 as n → ∞.
For m being odd number, based on Lemma 5.1, it can be concluded that f (m)

k (0.5) =
g(m)

k (0.5) = 0. Form=0, we have f (0)k (0.5) = C2k−1
n−1 0.5n−2 = 2C2k−1

n−1 0.5n−1 and

g(0)
k (0.5) = 2√

2π · 0.25(n − 1)
exp

(
− (2k − 1 − 0.5(n − 1))2

2 · 0.25(n − 1)

)
.

According to the fact that f (0)k (0.5) = 2P{X = 2k − 1} with X ∼ B(n − 1, 0.5), and that
X is asymptotical normal distribution N(0.5(n − 1), 0.25(n − 1)), we have f (0)k (0.5) ∼=
g(0)
k (0.5). Form=2, by Lemma 5.1, it can be derived that

f (2)k (0.5) =
n−k∑
n1=k

Ck−1
n1−1C

k−1
n−n1−10.5

n−2 · [4(n2 − n + 2) − 16nn1 + 16n21]

= C2k−1
n−1 0.5n−2 ·

(
4(−n2 − n + 2) − 8k

(2k + 1)
n + 8(k + 1)

(2k + 1)
n2

)

=: f (0)k (0.5) × J1
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and

g(2)
k (0.5) = 2

√
2√

π(n − 1)
exp

{
−2(2k − n+1

2 )2

n − 1

}

×
(

−24 + 16n − 96k + 128k2 + 192k − 96
n − 1

− 128(2k − 1)2

(n − 1)2

)

=: g(0)
k (0.5) × J2.

Here

J1 = 4(−n2 − n + 2) − 8k
(2k + 1)

n + 8(k + 1)
(2k + 1)

n2,

J2 = −24 + 16n − 96k + 128k2 + 192k − 96
n − 1

− 128(2k − 1)2

(n − 1)2
.

Under the condition that limn→∞(2k − (n + 1)/2)2/(n − 1) = c ≥ 0, we have k =
(n + 1)/4 ± 1

2
√
c(n − 1) and limn→∞ J1/J2 = 1. Note that f (0)k (0.5) � g(0)

k (0.5), we have
f (2)k (0.5) � g(2)

k (0.5).
When limn→∞[(2k − (n + 1)/2)2]/(n − 1) = ∞, J1 = O(n2), J2 = O(n) and D2 =

o(n−5/2). According to the De Movire–Laplace theorem, D1/D2 → 1 as n → ∞. Hence,

f (2)k (0.5) = O(n2) · o(n−5/2) = o(n−1/2) → 0,

g(2)
k (0.5) = O(n) · o(n−5/2) = o(n−3/2) → 0.

That is f (2)k (0.5) � g(2)
k (0.5). Therefore, f (2)k (0.5) � g(2)

k (0.5). For m being even number
and larger than 2, based on Lemma 5.1, we can derive that f (m)

k (0.5) � g(m)

k (0.5) by
following the derivation form=2.

Hence, T1 is asymptotical normal distribution with meanμ1 and variance σ 2
1 . By a sim-

ilar method, it can be proved that T2 is asymptotical normal distribution with mean μ2
and variance σ 2

2 .
In the following, we compute critical values t1, t2, which makes P(T < t1) = α/2 and

P(T > t2) = α/2. Note that

P(T < t1)

= P(T < t1,T is even) + P(T < t1,T is odd)

= P(T < t1 |T is even) · P(T is even) + P(T < t1 |T is odd) · P(T is odd)

= P(T1 < t1) · θ1 + P(T2 < t1) · θ2

= P
(
T1 − μ1

σ1
<

t1 − μ1

σ1

)
· θ1 + P

(
T2 − μ2

σ2
<

t1 − μ2

σ2

)
· θ2

= �

(
t1 − μ1

σ1

)
· θ1 + �

(
t1 − μ2

σ2

)
· θ2,
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we let �((t1 − μ1)/σ1) · θ1 + �((t1 − μ2)/σ2) · θ2 = α/2. Solve this equation and we
have

t1 ≈ −1.96
√

−4(3n − 5)a4 + 8(3n − 5)a3 + 2(4n − 7)a2 + 2(2n − 3)a

− 2(n − 1)a2 + 2(n − 1)a + 1

= −1.96
√
4(5 − 3n)a2(1 − a)2 + 2(2n − 3)a(1 − a) + 2a(1 − a)(n − 1) + 1

= −σ zα/2 + μ.

Similarly, t2 ≈ σ zα/2 + μ. �

Proof for Theorem 2.4: For the asymptotical properties of the variables T1 and T2 under
alternative hypothesis, the proof is very similar to that in Theorem 2.3, and we do not
detail it here. Under the condition that statistics T1 and T2 follow normal distributions
N(μ̃1, σ̃ 2

1 ) andN(μ̃2, σ̃ 2
2 ), respectively, we discuss the choice of optimal a in the following.

For significant level α, the test power is

Q(a) = P(T < t1, or T > t2)

= P(T < t1) + P(T > t2),

P(T < t1) = P(T1 < t1) · P(T1 is even) + P(T2 < t1) · P(T2 is odd)

= P
(
T1 − μ̃1

σ̃1
<

t1 − μ̃1

σ̃1

)
· θ̃1 + P

(
T2 − μ̃2

σ̃2
<

t1 − μ̃2

σ̃2

)
· θ̃2

= �

(
t1 − μ̃1

σ̃1

)
· θ̃1 + �

(
t1 − μ̃2

σ̃2

)
· θ̃2

= �

(−σ zα/2 + μ − μ̃1

σ̃1

)
· θ̃1 + �

(−σ zα/2 + μ − μ̃2

σ̃2

)
· θ̃2,

P(T > t2) = 1 − �

(
σ zα/2 + μ − μ̃1

σ̃1

)
· θ̃1 − �

(
σ zα/2 + μ − μ̃2

σ̃2

)
· θ̃2,

Q(a) = 1 + �

(−σ zα/2 + μ − μ̃1

σ̃1

)
· θ̃1 + �

(−σ zα/2 + μ − μ̃2

σ̃2

)
· θ̃2

− �

(
σ zα/2 + μ − μ̃1

σ̃1

)
· θ̃1 − �

(
σ zα/2 + μ − μ̃2

σ̃2

)
· θ̃2.

Here, �(·) stands for the standard normal distribution function. �
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