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Abstract

The application of network meta-analysis is becoming increasingly widespread,

and for a successful implementation, it requires that the direct comparison

result and the indirect comparison result should be consistent. Because of this,

a proper detection of inconsistency is often a key issue in network meta-

analysis as whether the results can be reliably used as a clinical guidance.

Among the existing methods for detecting inconsistency, two commonly used

models are the design-by-treatment interaction model and the side-splitting

models. While the original side-splitting model was initially estimated using a

Bayesian approach, in this context, we employ the frequentist approach. In this

paper, we review these two types of models comprehensively as well as explore

their relationship by treating the data structure of network meta-analysis as

missing data and parameterizing the potential complete data for each model.

Through both analytical and numerical studies, we verify that the side-splitting

models are specific instances of the design-by-treatment interaction model,

incorporating additional assumptions or under certain data structure. More-

over, the design-by-treatment interaction model exhibits robust performance

across different data structures on inconsistency detection compared to the

side-splitting models. Finally, as a practical guidance for inconsistency detec-

tion, we recommend utilizing the design-by-treatment interaction model when

there is a lack of information about the potential location of inconsistency. By

contrast, the side-splitting models can serve as a supplementary method espe-

cially when the number of studies in each design is small, enabling a compre-

hensive assessment of inconsistency from both global and local perspectives.
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Highlights

What is already known
• The application of network meta-analysis is becoming increasingly wide-

spread, and detecting inconsistency is an important issue. Among the exist-
ing methods for inconsistency detection, the design-by-treatment interaction
model and the side-splitting models are most commonly used.

What is new
• By treating the data structure of network meta-analysis as missing data and

parameterizing the potential complete data for the two types of models, we
investigate the relationship between the design-by-treatment interaction
model and the side-splitting models both analytically and numerically. We
further provide some practical guidance for detecting inconsistency in net-
work meta-analysis.

Potential impact for Research Synthesis Methods readers
• For researchers interested in network meta-analysis, the analytical results

based on potential complete data proposed in this paper provide new
research perspectives. For practitioners of network meta-analysis, this paper
offers some important practical guidance for detecting inconsistency.

1 | INTRODUCTION

The traditional meta-analysis, which combines evidence
from multiple independent studies, involves direct com-
parisons between two interventions. The fixed-effect
model and the random-effects model are the most com-
monly used models in traditional meta-analysis. The
fixed-effect model assumes a common effect size for dif-
ferent studies, providing a straightforward interpretation.
In the contrary, the random-effects model assumes that
the effect sizes from different studies follow a certain dis-
tribution, making it particularly suitable for handling
heterogeneous studies, albeit with a more complex inter-
pretation. In some practical applications, there may be
insufficient direct comparisons between the two interven-
tions of interest. In such cases, researchers may need to
include indirect evidence between the two interventions
through a common comparator. This type of comparison
is known as indirect comparison, with the method pro-
posed by Bucher et al.1 being among the most
widely used.

Network meta-analysis (NMA), also known as mixed
treatment comparisons or multiple treatments meta-
analysis, consists of both the direct and indirect compari-
sons to compare and rank multiple interventions simulta-
neously. It overcomes the limitations of the traditional
pairwise meta-analyses by incorporating all available evi-
dence into a general statistical framework.2 It has been
over 20 years since the development of NMA, and its

utilization in clinical literature has been steadily
growing.3–11 For a comprehensive understanding of con-
cepts, statistical models, and methods employed in NMA,
there have been numerous reviews in the literature.12–21

In particular, NMA can be performed within either a fre-
quentist or a Bayesian framework.14,22–27 To achieve
dependable and understandable results from an NMA, it
is crucial to meet the condition of exchangeability, which
can be thought of as qualitative homogeneity.28 This
implies similarity29 concerning effect modifiers across all
treatment comparisons. Exchangeability, in turn, ensures
consistency. Consistency indicates that the effect sizes
within predefined subsets of the data are alike. Conse-
quently, it becomes feasible to synthesize the effect sizes
from both direct and indirect evidence. When there is a
lack of consistency, the terms “incoherence”30,31 and
“inconsistence”13,32 are often used, and we also note that
there are quite a few inconsistency detection methods in
the literature. They include, for example, the estimation
based on linear mixed models,30 the Bayesian hierarchi-
cal models,32 the multidimensional scaling model,33 the
side-splitting models,34,35 the two-stage model,36 the
design-by treatment interaction model,37 and the graph-
theoretical model.38

In this paper, we concentrate on two popular models
for detecting inconsistency in NMA, namely the design-
by-treatment interaction model and the side-splitting
models. The former, proposed by Higgins et al.37 and
White et al.,39 considers studies with the same
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interventions as the same design. It detects inconsistency
globally by introducing inconsistency factors between dif-
ferent designs. The latter, including the original side-
splitting model proposed by Dias et al.34 and the symmet-
ric side-splitting model proposed by White,35 detect local
inconsistency between the direct and indirect evidence
for a specific intervention comparison. Although the orig-
inal side-splitting model was proposed in a Bayesian
framework, we adopt the frequentist approach in this
paper. These are both contrast-based models. Tu40

rewrote them as arm-based models based on the general-
ized linear mixed models and pointed out that the side-
splitting models are special cases of the design-
by-treatment interaction model. This paper aims to more
deeply explore the relationship between these two types
of models from a missing data perspective based on the
original contrast-based models.

The remainder of the paper is organized as follows. In
Section 2, we provide a comprehensive review of the
design-by-treatment interaction model and the side-
splitting models, followed by three examples of NMA
with varying data structures. And for each example, we
further discuss the parameterization forms of the poten-
tial complete data and the corresponding parameteriza-
tion forms of the observed data, which allows us to
explore the characteristics of the two types of models and
examine their relationship. In Section 3, we present some
interesting findings from our numerical studies, in which
we evaluate the performance of the design-by-treatment
interaction model and the original side-splitting model in
terms of the estimation accuracy of the heterogeneity and
the empirical size and power of the inconsistency test. In
Section 4, we provide an in-depth analysis of the current
study, highlight potential areas for future research in
detecting inconsistency in NMA, and offer practical guid-
ance based on our analysis.

2 | METHODS

We consider a network including a total of T treatments.
For treatments that are not involved in a study, the out-
comes can be regarded as missing. In this paper, we refer
to the observed data together with the missing outcomes
as potential complete data. Following Higgins et al.,37 we
denote the “design” of a study by the set of treatments
compared within the study. Let J ¼A,B,… index treat-
ments; d¼ 1,…,D index designs; and i¼ 1,…,nd index
studies within the dth design. Without loss of generality,
let A be the reference (baseline) treatment. Contrast-
based methods are used to establish statistical models for
the observed effect size yAJdi , which represents the
observed contrast between treatment J (J ¼B,C,…) and

treatment A for the ith trial in the dth design. For a treat-
ment contrast JJ 0 that does not involve the reference
treatment A, it can be expressed as yJJ

0
di ¼ yAJ

0
di � yAJdi .

2.1 | Design-by-treatment
interaction model

The design-by-treatment interaction model proposed by
Higgins et al.37 and White et al.39 constructs the statistical
model for yAJdi as

yAJdi ¼ μAJ þωAJ
d þβAJdi þϵAJdi , ð1Þ

where μAJ is the fixed effect of treatment J relative to
A for the whole network, ωAJ

d are the design-by-treatment
interaction parameters that reflect inconsistency, βAJdi
stand for the heterogeneity within each design, and ϵAJdi
represent the within-study errors. Model (1) explains the
variation of yAJdi between studies by three components,
namely the design-level variation referring the inconsis-
tency, the heterogeneity between studies within a design,
and the random error.

The design-level effect sizes, denoted as
dAJd ¼ μAJ þωAJ

d , represent the combination of the fixed
effect and the design-by-treatment interactions. By the
fact that yJJ

0
di ¼ yAJ

0
di � yAJdi for J,J 0 ≠A, the design-level

effect size is dJJ
0

d ¼ dAJ
0

d �dAJd . In the context of model (1),
the inconsistency is defined as the difference between dAJd
from different designs, which is also referred to as
“design inconsistency.”37 Through the analysis of design
inconsistency, we can examine both the direct and indi-
rect comparisons of a treatment contrast within a specific
loop.37 For example, consider the treatment contrast
between B and C in the loop ABC. It is important to note
that, for any pair of distinct designs d and d0—regardless
of whether they involve the treatments A, B, and C being
of interest for the loop—we consider the existence of
design-level effect sizes dABd , dACd , dBCd , dABd0 , d

AC
d0 , and dBCd0 .

This perspective aligns with the concept of the potential
complete data in our paper. The direct comparison dBCd is
equal to the indirect comparison dACd �dABd within the
same design d, indicating loop consistency. However,
the direct comparison dBCd in design d may differ from the
indirect comparison dACd0 �dABd0 based on design d0, result-
ing in inconsistency for the loop ABC. The design-
by-treatment interaction model (1) takes into account the
inconsistency for all treatment contrasts from a global
perspective, allowing for the evaluation of both loop
inconsistency and design inconsistency.37,39 It extends
the approach proposed by Lu and Ades,32 which only
addresses loop inconsistency.
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Following White et al.,39 for the ith study in the dth
design, we regard ωAJ

d as fixed effects in this paper. When
ωAJ
d ¼ 0 for all d and J, model (1) reduces to a consistency

model. The degrees of heterogeneity βABdi ,β
AC
di ,…

� �T
are

assumed to be random effects and follow a multivariate
normal distribution with mean vector 0 and covariance
matrix Σ¼ 0:5þ0:511Tð Þτ2, where 11T is a matrix with
all elements being one. We further denote the study-level
effect sizes by dAJdi ¼ μAJ þωAJ

d þβAJdi . The random errors
ϵABdi ,ϵ

AC
di ,…

� �T
are assumed to follow a multivariate nor-

mal distribution with mean vector 0 and a known covari-
ance Sdi. The parameters for the potential complete data
are μAJ , ωAJ

d , and τ2 with J ¼B,C,… and d¼ 1,…,D. Due
to missing data, it is not possible to estimate all the
parameters using only the observed data. In Section 2.3,
we will provide three examples of NMA with different
data structures and present the parameterization forms
for both the potential complete data and the correspond-
ing observed data.

In the design-by-treatment interaction model, differ-
ent reference treatments can lead to different parameteri-
zations, resulting in different interpretations of the
estimated parameters. However, this does not affect
the number of inconsistency parameters, the estimated
design-level effect sizes, and the test results for inconsis-
tency. In this paper, we adopt the frequentist approach39

to estimate the parameters and test for inconsistency
using the Wald test. The Stata commands network meta
consistency, network meta inconsistency, and mvmeta can
be used to implement the estimation and test
procedures.35

2.2 | Side(node)-splitting models

The original node-splitting model34 was initially proposed
within a Bayesian framework to assess inconsistency
between direct evidence and indirect evidence for a spe-
cific treatment contrast. This model treats each treatment
contrast as a “node,” and focuses on detecting inconsis-
tency locally. Later, White35 introduced the term “side-
splitting”model to describe this approach since treatment
contrasts are represented as sides in the network dia-
gram, and moreover, he proposed a frequentist estima-
tion approach for this model. In this paper, we adopt the
terminology used in White35 and refer to this model as
the original side-splitting model. The main idea of the
original side-splitting model is dividing the treatment
contrast of interest into two distinct components: the
direct comparison and the indirect comparison.
The effect size of the treatment contrast based on the
direct evidence is derived from all direct comparisons,
while the effect size based on the indirect evidence is

obtained from NMA of the remaining evidence. The con-
sistency assumption between the direct and indirect evi-
dence is then assessed.

Without loss of generality, assume that the treatment
contrast of interest is side AB and the reference
treatment is A. To detect whether there is a difference
between the direct comparison and the indirect compari-
son for treatment contrast AB, we divided the designs in
the network into two groups, the first group comprises
designs containing both treatments A and B, denoted as
SAB, and the remaining designs belong to the second
group. Then the original side-splitting model is given as

yAJdi ¼
μAJ þω � I J ¼Bð ÞþβAJdi þϵAJdi ford� SAB,

μAJ þβAJdi þϵAJdi ford =2 SAB,

(
ð2Þ

where I �ð Þ represents the indicator function.
In model (2), there is a single inconsistency parameter

ω to represent inconsistency between the treatment con-
trast AB. Therefore, it focuses on detecting local inconsis-
tency. Similarly, let dAJd represent the design-level effect
sizes. For a design d in the set SAB, the design-level
effect size for the treatment contrast AB is given by
dABd ¼ μABþω. Since dABd can be directly estimated using
the observed data yABdi , it indicates a direct evidence. On
the other hand, for design d0 =2 SAB where yABd0i is not
observed, the design-level effect size for the treatment
contrast AB is dABd0 ¼ μAB. In this case, since yABd0i cannot be
directly estimated, dABd0 indicates an indirect evidence.

In model (2), for J≠A,B and d� SAB, d
0 =2 SAB, we

observe that dAJd ¼ dAJd0 and dABd ≠ dABd0 . Then based on the
equation dJJ

0
d ¼ dAJ

0
d �dAJd for the same design d, it can be

derived that dBJd ≠ dBJd0 . In summary, model (2) implies
the assumption that the design-level effect sizes dAJd ¼ dAJd0
but dBJd ≠ dBJd0 . This indicates that for the treatment con-
trast AB, there exists an unfairness between treatment
A and treatment B. As a consequence, the original side-
splitting model is highly sensitive to the choice of the
baseline treatment. To address this limitation of
the model, White35 proposed the symmetric side-splitting
model. With A being the baseline treatment and AB
being the treatment contrast of interest, the symmetric
side-splitting model can be expressed as

yAJdi ¼
μAJ þ0:5ωþ0:5ω � I J ¼Bð ÞþβAJdi þϵAJdi ford� SAB,

μAJ þβAJdi þϵAJdi ford =2 SAB:

(

ð3Þ

In model (3), for d� SAB and d0 =2 SAB, an inconsis-
tency parameter ω is introduced to capture the difference
between dABd and dABd0 , represented as dABd ¼ dABd0 þω.
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Additionally, for J≠A,B, model (3) distributes the
inconsistency parameter ω equally to the treatment con-
trasts AJ and BJ, resulting in dAJd ¼ dAJd0 þ0:5ω and
dBJd ¼ dBJd0 �0:5ω. This equal distribution ensures a bal-
anced allocation of the inconsistency parameter across
relevant treatment contrasts.

In this paper, we employ a frequentist framework to
estimate the parameters and test for inconsistency in the
two side-splitting models. We assume that the inconsis-
tency parameter ω is fixed, and that the degree of hetero-
geneity βAJdi and the random error ϵAJdi are the same as
those in the design-by-treatment interaction model. To
carry out the heterogeneity estimation and the inconsis-
tency test, we utilize the Stata commands network side-
split all nosymmetric and network sidesplit all.

2.3 | Examples: Parameterization of the
two types of models

To further illustrate the two types of models as well as
their relationship, we provide three examples. These
examples cover two types of NMA data structures, with
each structure considering three treatments: A, B, and C.
The first data structure is referred to as mixture data,
which consists of four designs: AB, AC, BC, and ABC.
The second data structure is referred to as two-arm data,
which includes AB, AC, and BC designs. In practical
applications, mixture data is more commonly encoun-
tered, while the networks with only two-arm trials are
relatively rare.41,42 In each example, we present the
parameterization of the design-level effect sizes for both

the potential complete data and the observed data. The
parameterization of the potential complete data helps us
understand the characteristics of the models, while the
parameterization of the observed data enables us to fig-
ure out which parameters can be estimated and how they
are estimated.

2.3.1 | Example I: The original side-splitting
model on mixture data

In this example, our goal is to illustrate the characteris-
tics of the side-splitting models, which detect inconsis-
tency locally. We consider three treatments, and
separately analyze the three sides: AB, AC, and BC. For
the sake of simplicity, we focus on the original side-
splitting model in this illustration. Similar results can be
obtained for the symmetric side-splitting model.

For the mixture data scenario, Table 1 displays the
parameters of the design-level effect sizes for both
the potential complete data (based on model (2)) and the
observed data. Each row in the table corresponds to a
specific side that is being split, with the first treatment in
each side assumed to be the baseline treatment. Accord-
ing to the parameterization of the observed data, there
are three assumptions for the model splitting side AB.
Firstly, the design-level effect size for the treatment com-
parison AB remains consistent between designs AB and
ABC. Secondly, the design-level effect size for the treat-
ment comparison AC also remains consistent between
designs AB and ABC. Lastly, the design-level effect size
for the treatment comparison BC in design BC may

TABLE 1 Design-level effect sizes of the original side-splitting model on mixture data.

Side Design
Potential complete data Observed data

B versus A C versus A B versus A C versus A C versus B

AB AB μABþω μAC μABþω

ABC μABþω μAC μABþω μAC

AC μAB μAC μAC

BC μAB μAC μAC �μAB

AC AB μAB μAC μAB

ABC μAB μAC þω μAB μAC þω

AC μAB μAC þω μAC þω

BC μAB μAC μAC �μAB

BC AB μAB μAC μAB

ABC μAB μAC þω μAB μAC þω

AC μAB μAC μAC

BC μAB μAC þω μAC �μABþω
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exhibit inconsistency with the other designs. Interest-
ingly, these assumptions coincide with those in the
model splitting side AC. Consequently, in this scenario,
the models for splitting sides AB and AC are identical.
However, from the same perspective, the model splitting
side BC differs.

2.3.2 | Example II: The design-by-treatment
interaction model and the side-splitting models
on mixture data

In this example, our objective is to illustrate the general
relationship between the design-by-treatment interaction
model and the side-splitting models using mixture data.
We specifically focus on splitting side AB in the side-
splitting models, while assuming that treatment A is the
reference (baseline) treatment in all three models.
Table 2 provides the parameters of the design-level effect
sizes for both the potential complete data (based on
models (1), (2), and (3)) and the observed data.

In the design-by-treatment interaction model, there are
initially 10 parameters in the design-level effect sizes for the
potential complete data. However, due to missingness and
for the purpose of model identification, only five parameters
can be estimated in the design-level effect sizes with the
observed data. The corresponding relationships are as fol-
lows: ~μAB ¼ μABþωAB

1 , ~μAC ¼ μACþωAC
2 , ~ω1 ¼ωAB

2 �ωAB
1 ,

~ω2 ¼ωAC
3 �ωAC

2 , and ~ω3 ¼ωAC
4 �ωAC

2 �ωAB
4 þωAB

1 .

Upon comparing the design-level effect sizes for the
potential complete data of the three models, we observe
that certain parameter restrictions can lead to the
design-by-treatment interaction model reducing to either
the original side-splitting model or the symmetric side-
splitting model for a specific side. For instance, when
ωAB
1 ¼ωAB

2 and ωAB
3 ¼ωAB

4 ¼ 0, along with
ωAC
1 ¼ωAC

2 ¼ωAC
3 ¼ωAC

4 ¼ 0, the design-by-treatment
interaction model reduces to the original side-splitting
model for the side AB. Similarly, when ωAB

1 ¼ωAB
2 ,

ωAB
3 ¼ωAB

4 ¼ 0, and ωAC
1 ¼ωAC

2 , ωAC
3 ¼ωAC

4 ¼ 0, the
design-by-treatment interaction model reduces to
the symmetric side-splitting model for the side AB. Anal-
ogously, similar parameter restrictions can lead to the
reduction of the design-by-treatment interaction model
to the original side-splitting model and the symmetric
side-splitting model for sides AC and BC. From this per-
spective, it is evident that the side-splitting models can be
considered as special cases of the design-by-treatment
interaction model with additional assumptions.37,40

2.3.3 | Example III: The design-by-treatment
interaction model and the side-splitting models
on two-arm data

In this example, we present a special case of a network
with three treatments and two-arm trials, where both the
design-by-treatment interaction model and the

TABLE 2 Design-level effect sizes of the design-by-treatment interaction model and the side-splitting models on mixture data.

Model Design
Potential complete data Observed data

B versus A C versus A B versus A C versus A C versus B

Model 1 AB μABþωAB
1 μAC þωAC

1 ~μAB

ABC μABþωAB
2 μAC þωAC

2 ~μABþ ~ω1 ~μAC

AC μABþωAB
3 μAC þωAC

3 ~μAC þ ~ω2

BC μABþωAB
4 μAC þωAC

4 ~μAC �~μABþ ~ω3

Model 2 Split side AB

AB μABþω μAC μABþω

ABC μABþω μAC μABþω μAC

AC μAB μAC μAC

BC μAB μAC μAC �μAB

Model 3 Split side AB

AB μABþω μAC þ0:5ω μABþω

ABC μABþω μAC þ0:5ω μABþω μAC þ0:5ω

AC μAB μAC μAC

BC μAB μAC μAC �μAB

Note: Model 1, the design-by-treatment interaction model. Model 2, the original side-splitting model. Model 3, the symmetric side-splitting model.
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side-splitting models exhibit identical parameterizations.
As shown in Table 3, the design-by-treatment interaction
model involves eight parameters for the design-level
effect sizes with the potential complete data. However,
for the observed data structure, this number reduces to
3, including only 1 inconsistency parameter. Interest-
ingly, in both the original side-splitting model and the
symmetric side-splitting model, the allocation of
the inconsistency parameter ω to treatments A and
B cannot be discerned based on the estimable parameters
with the observed data. Consequently, the two types of
models become indistinguishable. In conclusion, for
NMA that only includes two-arm trials with three treat-
ments, the design-by-treatment interaction model and
the two side-splitting models are equivalent to each
other.

3 | RESULTS

This section compares the empirical performance of the
design-by-treatment interaction model and the side-
splitting models through simulations. For simplicity, the
original side-splitting model is chosen as a representative
of the side-splitting models. Given that clinical trials
commonly utilize dichotomous data, our analysis focuses
on dichotomous outcome data and measures the effect
sizes using log odds ratio ( lnOR). In our simulations, we
systematically investigate networks consisting of 3, 4, and
7 treatments. More specifically, the networks with 3 treat-
ments are used to scrutinize and validate the relationship
between the design-by-treatment interaction model and
the original side-splitting model. Networks involving
4 treatments are employed to assess how the number of
studies affects the detection of inconsistency.

Furthermore, the network with 7 treatments are crafted
to more accurately reflect the inherent complexity in
real-world network meta-analyses. We represent the
treatments with capital letters A,B,…. The investigation
of these treatment quantities is illustrated across five net-
work structures, as depicted in Figure 1. The simulated
data for the five networks were generated based on the
potential complete data mechanism using the following
procedure:

a. Set up the design-level effect sizes for the potential com-
plete data. We used treatment A as the reference
(baseline) treatment and set the design-level effect
sizes dABd ,dACd ,…

� �T
for the dth design based on Case

1 to Case 5. The inconsistency parameter ω varied in
equally spaced increments from 0 to 1, with intervals
of 0.1, representing different levels of inconsistency.

b. Simulate the study-level effect sizes. For the ith study in
the dth design, we generated the study-level effect
sizes dABdi ,d

AC
di ,…

� �T
from a normal distribution with

mean vector dABd ,dACd ,…
� �T

and covariance matrix
Σ¼ 0:5þ0:511Tð Þτ2, where 1 denotes a vector with all
elements equal to one and τ2 ¼ 0:1.

c. Simulate the event rate of the reference (baseline) treat-
ment and compute the event rate for each arm in each
study. For each study, we generated the event rate of
treatment A from a uniform distribution:
pAdi �U 0:25,0:75ð Þ. Further by the definition of the
odds ratio, we computed the event rates for other
treatment arms as follows:

pJdi ¼
pAdi exp dAJdi

� �
1�pAdiþpAdi exp dAJdi

� � ,

where J represents B,C,….

TABLE 3 Design-level effect sizes of the design-by-treatment interaction model and the side-splitting models on two-arm data.

Model Design
Potential complete data Observed data

B versus A C versus A B versus A C versus A C versus B

Model 1 AB μABþωAB
1 μAC þωAC

1 ~μAB

AC μABþωAB
2 μAC þωAC

2 ~μAC

BC μABþωAB
3 μAC þωAC

3 ~μAC �~μABþ ~ω

Model 2 AB μAB μAC μAB

AC μAB μAC μAC

BC μAB μAC þω μAC �μABþω

Model 3 AB μAB μAC μAB

AC μAB μAC μAC

BC μAB�0:5ω μAC þ0:5ω μAC �μABþω

Note: Model 1, the design-by-treatment interaction model. Model 2, the original side-splitting model. Model 3, the symmetric side-splitting model.
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d. Generate the arm data for each study. Considering bal-
anced studies with an equal number of sample size
for each arm, we generated the sample size for each
study from a uniform distribution: ndi �U 50,150ð Þ.
We further simulated the observed event number for
each arm using a binomial distribution:
mJ

di �Bin ndi,pJdi
� �

, where J represents A,B,….

e. In each study, omit the arm data for the treatments that
are not included in the design.

Based on the observed data, we can calculate the
observed lnOR as the observed effect sizes, as well as
the covariance of the observed effect sizes within each
study. We then perform the parameter estimation and

(a) Network 1 (b) Network 2

(c) Network 3

3

6

3 or 1

4

4

(d) Network 4

1
4

2

2
3

2

2 3

3

2
1

(e) Network 5

FIGURE 1 Structures of the networks. The number represents the number of studies for direct comparison between each pair of

treatments. In Networks 1, 2, and 3, the number of studies for each design is the same, either 3 or 15.
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the inconsistency test with the significance level α¼ 0:05
separately using the design-by-treatment interaction
model (1) and the original side-splitting model (2). This
allows us to obtain the estimate of the heterogeneity (bτ2)
and the inconsistency test results. In the original side-
splitting model, we conduct a local inconsistency test by
splitting all possible sides. Additionally, we perform a
global inconsistency test by simultaneously evaluating all
splits, incorporating the Bonferroni correction for multi-
ple comparisons. To elucidate, in the original side-
splitting model, if there are m distinct tests, the null
hypothesis suggesting no inconsistency across all splits
will be rejected if any individual test is rejected at the sig-
nificance level of α=m. We repeat the process of data gen-
eration, estimation, and inconsistency test for M¼ 1000
times, considering each case and each value of ω, and
then calculate the average bτ2 and the probability of reject-
ing the null hypothesis in the inconsistency test for each
model.

3.1 | Networks 1–3 with three
treatments

In this section, we focus on networks consisting of three
treatments: A, B, and C, and we present three cases with
distinct network structures. The network structures for
the first two cases are illustrated in Figure 1a,b, while the
network structure for the third case is displayed in
Figure 1c. The main distinction between Case 1 and Case
2 lies in the consideration of design inconsistency that
appears only in Case 1. To be more specific, Case
1 assumes that the effect sizes associated with AB differ
between design AB and design ABC, and the effect sizes

associated with AC differ between design AC and design
ABC, whereas Case 2 regards these effect sizes as identi-
cal. The design-level effect sizes for the observed data are
summarized in Table 4. We consider a balanced network
with equal number of studies for each design. To be pre-
cise, we set the number of studies (NS) for each design as
NS = 3 or NS = 15. The simulation results for the three
cases are presented in Figures 2–4, respectively.

3.1.1 | Case 1

In this case, both the estimation and inconsistency test
results are identical for the original side-splitting models
for sides AB and AC, as demonstrated in Example
I. Therefore, m¼ 2 for the Bonferroni correction in the
original side-splitting model. From the left panels of
Figure 2, it is evident that when ω¼ 0, both the design-
by-treatment interaction model and the original side-
splitting models for all three sides accurately estimate τ2.
When the inconsistency parameter ω increases, the
design-by-treatment interaction model continues to pro-
vide accurate estimates of τ2, while the original side-
splitting models tend to overestimate τ2 for all three sides.
In the right panels of Figure 2, we observe the behavior
of the models in terms of the empirical type I error rate
and the empirical power. As ω increases, the empirical
power of the design-by-treatment interaction model
increases more rapidly compared to the original side-
splitting models, indicating its greater capability for
detecting inconsistency. In contrast, the empirical power
of the original side-splitting model for side BC remains
around 0.05, suggesting its failure in inconsistency test.
Comparing the right panels of Figure 2a,b, we find that

TABLE 4 Design-level effect sizes for the networks with 3 treatments.

Design

Potential complete data Observed data

B versus A C versus A B versus A C versus A C versus B

Case 1 AB 0.25 0.5 0.25

ABC 0.25 + ω 0.5 0.25 + ω 0.5

AC 0.25 0.5 + ω 0.5 + ω

BC 0.25 0.5 + ω 0.25 + ω

Case 2 AB 0.25 0.5 0.25

ABC 0.25 0.5 0.25 0.5

AC 0.25 0.5 0.5

BC 0.25 0.5 + ω 0.25 + ω

Case 3 AB 0.25 0.5 0.25

AC 0.25 0.5 0.5

BC 0.25 0.5 + ω 0.25 + ω
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when the number of studies in each design is small, the
design-by-treatment interaction model cannot control the
type I error rate. Additionally, the empirical power of
the global test for the original side-splitting models is
lower than the design-by-treatment interaction model.

To further explain the observed results, we compare
the true effect sizes at the design-level (presented in
Table 4) in the simulation with the assumptions made by
each model. Regarding the design-by-treatment interac-
tion model, when comparing the model assumptions for
the observed data in Table 2 with the true effect sizes in
Table 4, we find that the design-by-treatment interaction
model accurately captures the true design-level effect
sizes by setting ~μAB ¼ 0:25, ~μAC ¼ 0:5, and

~ω1 ¼ ~ω2 ¼ ~ω3 ¼ω. On the other hand, the assumptions
made by the original side-splitting models for the three
sides (Table 1) do not align with the simulation settings
in Case 1. For instance, the original side-splitting model
that splits side AB assumes that the design-level effect
size for the treatment comparison AB is the same in the
AB and ABC designs. However, in our simulation settings
for Case 1, these effect sizes differ. This difference repre-
sents inconsistency between different designs, but the
original side-splitting model estimates it as heterogeneity.
The assumption for the treatment comparison AC follows
a similar pattern. This difference leads to an overestima-
tion of heterogeneity τ2 and incomplete detection of
inconsistency. Similar reasons apply to the original
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(a) Simulation results of Case 1 with NS=3.
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(b) Simulation results of Case 1 with NS=15.

FIGURE 2 Simulation results of Case 1. “DBTI” represents the design-by-treatment interaction model, “OSSM” represents the original
side-splitting model, and “C-OSSM” represents the Bonferroni correction of the original side-splitting model.
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side-splitting models that splits side AC and BC. When
the assumptions fail to capture the simulation settings, τ2

cannot be accurately estimated, which consequently
affects the power of inconsistency test. Moreover, the
assumption made by the original side-splitting model that
splits the side BC deviates significantly from the actual
settings in Case 1, resulting in a complete failure of the
inconsistency test.

In this case, there is only one inconsistency factor in
the true effect sizes at the design-level. The design-
by-treatment interaction model assumes three inconsis-
tency factors, which is higher than the actual number.
From the estimation of τ2, it can be seen that although

the model is redundant, it is still able to estimate the
parameters correctly and provides a higher power in
inconsistency test. On the other hand, the original side-
splitting model assumes one inconsistency factor, but the
assumptions in this model do not match the actual incon-
sistency factor, leading to inaccurate parameter estima-
tion and the risk of complete failure in inconsistency test.
Furthermore, due to the relatively small number of stud-
ies with NS= 3 compared to the three inconsistency fac-
tors in the design-by-treatment interaction model, the
Wald test is unable to adequately control the type I error
rate when ω¼ 0. In contrast, when considering the same
number of studies but with only one inconsistency factor,
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(a) Simulation results of Case 2 with NS=3.
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(b) Simulation results of Case 2 with NS=15.

FIGURE 3 Simulation results of Case 2. “DBTI” represents the design-by-treatment interaction model, “OSSM” represents the original
side-splitting model, and “C-OSSM” represents the Bonferroni correction of the original side-splitting model.
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the Wald test of the original side-splitting model demon-
strates a better control over the empirical type I error
rate. Lastly, when the number of studies for each design
increases to NS= 15, the empirical type I error rates of all
models approach their nominal levels.

3.1.2 | Case 2

In this case, both the estimation and inconsistency test
results are identical for the original side-splitting models
for sides AB and AC. Therefore, m¼ 2 for the Bonferroni
correction in the original side-splitting model. From the

left panels of Figure 3, we can observe that the
design-by-treatment interaction model and the original
side-splitting models that split sides AB and AC can accu-
rately estimate the heterogeneity τ2, while the original
side-splitting model that splits side BC overestimates τ2.
From the right panels of Figure 3, we can see that the
original side-splitting models that split sides AB, AC, and
the Bonferroni correction have slightly higher power in
inconsistency test compared to the design-by-treatment
interaction model, while the original side-splitting model
that splits side BC completely fails in inconsistency test.

The interpretation of the results for the
design-by-treatment interaction model and the original
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(a) Simulation results of Case 3 with NS=3.
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(b) Simulation results of Case 3 with NS=15.

FIGURE 4 Simulation results of Case 3. “DBTI” represents the design-by-treatment interaction model, “OSSM” represents the original
side-splitting model, and “C-OSSM” represents the Bonferroni correction of the original side-splitting model.
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side-splitting model that splits side BC is similar to the
previous case. For the original side-splitting model that
splits side AB, by comparing the model assumptions for
the observed data in Table 1 and the simulation settings
for the design-level effect sizes in Table 4, we can see that
the model assumptions align with the actual settings by
setting μAB ¼ 0:25�ω and μAC ¼ 0:5. This model has only
one inconsistency factor, which perfectly matches the
true data. In this case, it exhibits higher power in incon-
sistency test compared to the design-by-treatment inter-
action model with redundant parameters. Similarly to
Case 1, the design-by-treatment interaction model
exhibits poor control over the empirical type I error rate

when the number of studies for each design is only
NS= 3. And as expected based on the large sample the-
ory, the Wald test performs better when the number of
studies increases to NS= 15. The same logic applies to
the original side-splitting model that splits side AC.

3.1.3 | Case 3

In this case, we focus on networks with three interven-
tions and two-arm trials. From Table 3, it is evident that
the design-by-treatment interaction model and the origi-
nal side-splitting approach (which splits side AB) are

TABLE 5 Design-level effect sizes for the network with 4 treatments.

Design

Potential complete data Observed data

B
versus A

C
versus A

D
versus A

B
versus A

C
versus A

D
versus A D versus B D versus C

Design-level effect sizes

Case 4 ABD 0.25 + ω 0.25 + ω 0.5 0.25 + ω 0.5

ACD 0.25 + ω 0.25 + ω 0.5 0.25 + ω 0.5

BD 0.25 0.25 0.5 0.25

CD 0.25 0.25 0.5 0.25

Parameterization

Model 1 ABD μABþωAB
1 μAC þωAC

1 μADþωAD
1 ~μAB ~μAD

ACD μABþωAB
2 μAC þωAC

2 μADþωAD
2 ~μAC ~μADþ ~ω1

BD μABþωAB
3 μAC þωAC

3 μADþωAD
3 ~μAD�~μABþ ~ω2

CD μABþωAB
4 μAC þωAC

4 μADþωAD
4 ~μAD�~μACþ ~ω3

Model 2 Split side
AD

ABD μAB μAC μADþω μAB μADþω

ACD μAB μAC μADþω μAC μADþω

BD μAB μAC μAD μAD�μAB

CD μAB μAC μAD μAD�μAC

Model 2 Split side
BD

ABD μAB μAC μADþω μAB μADþω

ACD μAB μAC μAD μAC μAD

BD μAB μAC μADþω μAD�μABþω

CD μAB μAC μAD μAD�μAC

Model 2 Split side
CD

ABD μAB μAC μAD μAB μAD

ACD μAB μAC μADþω μAC μADþω

BD μAB μAC μAD μAD�μAB

CD μAB μAC μADþω μAD�μACþω

Note: Model 1, the design-by-treatment interaction model. Model 2, the original side-splitting model.
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equivalent and effectively capture the characteristics of
the design-level effect sizes for Case 3 in Table 4.
Although not explicitly shown, the original side-splitting
models that split sides AC and BC also accurately depict
the data. In this specific scenario, all four models'
assumptions align with the actual simulation settings.
The findings depicted in Figure 4a,b further validate that,
in this case, the design-by-treatment interaction model
and the original side-splitting models (splitting sides AB,
AC, and BC) yield identical results. Thus, m¼ 1 for the
Bonferroni correction in the original side-splitting model.
Similarly to the previous cases, when NS= 15, the empir-
ical type I error rates of all models approach their nomi-
nal levels. However, it is important to note that the data

structure presented here represents a specific case, and
real network data tends to be more intricate and
complex.

3.2 | Network 4 with four treatments

In this section, we examine a network comprising four
treatments: A, B, C, and D. The designs and design-level
effect sizes in the network are detailed in Table 5. To
investigate the impact of the number of studies on incon-
sistency detection, we consider two network structures.
Both structures feature three studies for each design, with
the exception of design ACD, which has three studies in
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(a) Simulation results of Case 4 with NS=3 (ACD).

(b) Simulation results of Case 4 with NS=1 (ACD).
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FIGURE 5 Simulation results of Case 4. “DBTI” represents the design-by-treatment interaction model, “OSSM” represents the original
side-splitting model, and “C-OSSM” represents the Bonferroni correction of the original side-splitting model.
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the first structure and a single study in the second. In this
network structure, the number of studies for direct com-
parisons between each pair of interventions is shown in
Figure 1d. Therefore, the primary distinction between
two network structures lies in the number of studies for
design ACD, which is highlighted in bold in Table 5.

In our simulations, we compared the design-
by-treatment interaction model with all possible splits of
sides for the original side-splitting model. Table 5 out-
lines the parametric form for the design-level parameters
of the design-by-treatment interaction model. In the case
of the original side-splitting model, Table 5 specifically
provides the parametric forms for the design-level param-
eters associated with splitting sides AD, BD, and CD.
From these parametric forms, it is evident that splitting
sides BD and CD yield identical results for parameter esti-
mation and inconsistency detection. In addition, there is
no direct comparison between treatments B and C, the
total number of distinct tests for the Bonferroni correc-
tion in the original side-splitting model is m¼ 4. The sim-
ulation results are depicted in Figure 5.

From the simulation results, two main phenomena
are observed. Firstly, as depicted in Figure 5, no matter
what the inconsistency parameter ω is, both the
design-by-treatment interaction model and the original
side-splitting model that splits side AD can accurately
estimate τ2. This capability stems from their ability to
capture the design-level effect sizes for Case 4. Moreover,
considering that the original side-splitting model that
splits side AD only has one inconsistency parameter, it
demonstrates higher power than the design-by-treatment
interaction model in detecting inconsistency. Benefiting

from the robust performance of the original side-splitting
model that splits side AD, the overall inconsistency detec-
tion power of this model is slightly higher than that of
the design-by-treatment interaction model. Secondly, in
the balanced case where all designs involve three studies,
treatments B and C exhibit complete symmetry. Conse-
quently, simulation results of the original side-splitting
models for sides AB and AC are similar, as shown in
Figure 5a. However, as the number of studies for design
ACD decreases from 3 to 1, the power for inconsistency
detection of the original side-splitting model that splits
side AC, experiences a significant reduction, as illustrated
in Figure 5b.

3.3 | Network 5 with seven treatments

In this section, we explore a network with seven treat-
ments: A, B, C, D, E, F, and G. The designs and their cor-
responding numbers of studies are detailed in Table 6.
The number of studies for direct comparisons between
each pair of treatments is illustrated in Figure 1e. This
intricate network structure more closely aligns with
the network encountered in real-world data analyses. For
the settings of the design-level effect sizes, we begin by
considering a consistent network for the potential com-
plete data, setting the basic parameters
lnORAB, lnORAC, � � �, lnORAG
� �T

= (0.1, 0.2, …, 0.6)T. Sub-
sequently, we introduce seven inconsistency factors for
different designs, which is the maximum number permit-
ted by the network. Finally, based on the design-level
effect sizes for the potential complete data, we obtain the

TABLE 6 Design-level effect sizes for the network with 7 treatments.

Design
Number of
Studies

Observed data

B
versus
A

C
versus
A

D
versus
A

F
versus
A

G
versus
A

D
versus
B

E
versus
B

G
versus
B

E
versus
C

F
versus
C

ABD 1 0.1 0.3

AC 3 0.2

ACG 1 0.2 + ω1 0.6

AD 1 0:3þω2

AF 2 0.5

AG 2 0:6þω3

BD 1 0.2 + ω4

BE 2 0.3

BG 3 0.5 + ω5

CE 3 0.2 + ω6

CF 2 0.3 + ω7
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design-level effect sizes for the observed data, as detailed
in Table 6.

In this network, with a total of seven inconsistency
factors, the design-by-treatment interaction model can
fully capture the design-level effect sizes. From Figure 1e,
it is apparent that among the 7 treatments, there are
direct comparisons between 11 pairs of treatments,
resulting in 11 splits for the original side-splitting model.
In addition, splitting sides AF and CF yield the same
model, splitting sides AG and BG yield the same model,
and splitting sides BE and CE yield the same model. Con-
sequently, for the original side-splitting model's Bonfer-
roni correction, the number of distinct tests to consider is

m¼ 8. For the seven inconsistency factors, we consider
the following four settings:

a. Case 5.1: ω1 ¼ω2 ¼ω3 ¼ω, and ω4 ¼ω5 ¼ω6 ¼ω7 ¼ 0,
b. Case 5.2: ω1 ¼ω2 ¼ω3 ¼ω4 ¼ω5 ¼ω6 ¼ω7 ¼ω,
c. Case 5.3:ω4 ¼ω5 ¼�ω6 ¼ω, andω1 ¼ω2 ¼ω3 ¼ω7 ¼ 0,
d. Case 5.4: ω4 ¼ω5 ¼ω, ω1 ¼ω2 ¼ω3 ¼ω6 ¼ω7 ¼ 0,

where the inconsistency parameter ω varied in equally
spaced increments from 0 to 1, with intervals of 0.1,
representing different levels of inconsistency. In Case 5.1,
there are 3 non-zero inconsistency factors. In Case 5.2,
this number increases to 7. By comparing these two
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(a) Simulation results of Case 5.1.
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(b) Simulation results of Case 5.2.

FIGURE 6 Simulation results of Case 5. “DBTI” represents the design-by-treatment interaction model, “OSSM” represents the original
side-splitting model, and “C-OSSM” represents the correction of the original side-splitting model.
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cases, we can observe how the number of inconsistency
factors influences inconsistency detection. For the
design-level effect sizes in Case 5.3, the original side-
splitting model splitting side AB effectively captures
them. The only difference between Cases 5.4 and 5.3 lies
in the setting for ω6. The simulation results are presented
in Figure 6.

From Figure 6, it is evident that the design-
by-treatment interaction model consistently provides
accurate estimates of τ2. However, it cannot control the
type I error rate when ω¼ 0. When comparing the results
for Cases 5.1 and 5.2, the power of the design-
by-treatment interaction model increases with the

number of inconsistency factors. In the third setting for
the inconsistency factors, the original side-splitting model
that splits side AB significantly outperforms the design-
by-treatment interaction model, as it effectively captures
the data in Case 5.3. It demonstrates superior control of
the type I error rate when ω¼ 0 and exhibits higher
power when ω>0:5. This suggests that if prior knowl-
edge about the location of the inconsistency factor is
available, the original side-splitting model is a preferable
choice over the design-by-treatment interaction model.
However, if there is a misidentification of the source of
inconsistency, as demonstrated in Case 5.4 if the incon-
sistency is erroneously attributed to side AB, and the true
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(c) Simulation results of Case 5.3.
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(d) Simulation results of Case 5.4.

FIGURE 6 (Continued)
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value for ω6 is zero, the original side-splitting model can
perform worse than the design-by-treatment interaction
model.

4 | DISCUSSION

Detecting inconsistency accurately in NMA is essential
for ensuring the reliability of the meta-analytic results.
Previous literature has conducted several simulation
studies in this field. Among them, the studies by Glenny
et al.43 and Mills et al.44 relied on the indirect comparison
methods to estimate the effect sizes under a frequentist
framework, which may not be suitable for complex net-
works. Song et al.45 and Veroniki et al.46 were among the
first to investigate the statistical power for testing incon-
sistency in NMA through simulations, yet their studies
focused only on closed loops formed by two-arm trials.
To be more specific, Song et al.45 compared the Bucher
method (indirect treatment comparison), the frequentist
mixed treatment comparisons, and the Bayesian mixed
treatment comparisons. They concluded that the statisti-
cal power of these methods was influenced by the degree
of heterogeneity. Veroniki et al.46 evaluated the proper-
ties of the Z-test for detecting inconsistency and exam-
ined various factors that can impact the inconsistency
test, including pairwise comparisons with or without het-
erogeneity and different heterogeneity estimation
methods. Kiefer et al.47 conducted a simulation study
involving five treatments, but it only included two-arm
trials. They found that the assessment of inconsistency
was dependent on the degrees of heterogeneity. Apart
from the heterogeneity, other factors may also influence
inconsistency, such as the choice of measurement
scale48,49 and the data sparsity. Furthermore, inconsis-
tency and heterogeneity are related concepts. When there
is considerable heterogeneity among studies, it is neces-
sary to reassess the included evidence, as the results will
lack interpretability.28

In this paper, we examine the two types of common
models for detecting inconsistency, both analytically and
numerically. We observe that the performance of these
models depends on the extent to which the data conform
to the underlying assumptions of the models. Apart from
the random errors, the variability in the observed effect
sizes can arise from either heterogeneity or inconsistency.
Consequently, the estimation and detection of inconsis-
tency are heavily influenced by the assumptions made
and the heterogeneity that is assumed and estimated. In
the case of the side-splitting models, improper model
assumptions can lead to incorrect estimation, mistakenly
treating partial inconsistencies as heterogeneity, resulting

in low power for inconsistency test. Moreover, it can dis-
tort the measurements of both heterogeneity and incon-
sistency, ultimately leading to a complete failure in
detecting inconsistency. Besides, numerical results show
that the design-by-treatment interaction model cannot
adequately control the type I error rate when the number
of studies in each design is small.

Through this study, we have a few important observa-
tions for the design-by-treatment interaction model and
the side-splitting models within a frequentist framework.

• The design-by-treatment interaction model offers the
highest degree of freedom for modeling inconsistency.
The side-splitting models, on the other hand, are spe-
cial cases that require additional assumptions for the
inconsistency factors.

• The design-by-treatment interaction model demon-
strates robustness in both estimating the heterogeneity
and detecting the inconsistency.

• When the side-splitting models align with the data,
these models exhibit greater statistical power for
detecting the inconsistency compared to the design-
by-treatment interaction model. By contrast, if the data
does not adhere to the inconsistency assumptions of
the side-splitting models, the estimation of heterogene-
ity will tend to be inaccurate, consequently affecting
the inconsistency detection.

• In networks with three treatments and two-arm trials,
the design-by-treatment interaction model is equiva-
lent to the side-splitting models.

Recall that the design-by-treatment interaction model
is utilized for detecting global inconsistency, whereas the
side-splitting models are employed for detecting local
inconsistency, along with an assessment of the statistical
performance of these two models. We provide practical
guidance for inconsistency detection in NMA as follows.

• For detecting inconsistency on a global scale, it is
recommended to apply the design-by-treatment inter-
action model. For detecting inconsistency on a local
scale, the side-splitting models can be the suitable
choice.

• In cases where there is no specific purpose for incon-
sistency detection or a lack of information about the
potential location of inconsistency, it is advisable to
use the design-by-treatment interaction model. The
side-splitting models can be employed as supplemen-
tary methods, particularly when the number of studies
in each design is small. This allows for a comprehen-
sive assessment of inconsistency from both global and
local perspectives.
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In the current research, our objective is to analyze the
design-by-treatment interaction model and the side-
splitting models from a statistical perspective. It is crucial
to note that, to obtain reliable and interpretable results
from an NMA, careful consideration is required for vari-
ous aspects such as the method for selecting the included
studies, the definitions of the network nodes and out-
comes, among others. This ensures the construction of a
prior consistent network, which should also be subse-
quently checked statistically.50 Besides, it is worth men-
tioning that our research has some limitations that
should be acknowledged. Firstly, the determination of
whether inconsistency exists relies solely on the p-value.
It is recommended, however, to take into account the
model fit and changes to the estimated between-study
heterogeneity in the side-splitting models.34 A substantial
reduction in heterogeneity may also indicate the presence
of inconsistency. Secondly, we did not investigate the
potential impact of the proportion of direct and indirect
comparisons on the inconsistency test, leaving unan-
swered questions about the extent to which this propor-
tion influences the detection of inconsistency. Thirdly,
we did not extensively explore the effects of indirect com-
parison on the inconsistency test when different numbers
of comparators are involved. Fourthly, we did not delve
into the exploration of how different heterogeneity esti-
mation methods may affect the estimation of inconsis-
tency. And lastly, given that many real NMAs involve
designs with a limited number of studies, there is a need
to enhance the performance of the Wald test within the
design-by-treatment interaction model. These limitations
also highlight the need for further research.
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