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 A B S T R A C T

This paper investigates data distributed across various machines in a non-random manner. 
We introduce two innovative distributed estimators, tailored to accommodate varying levels 
of communication cost and data privacy protection. The proposed estimators adeptly ad-
dresses the challenges associated with the non-random distribution of data. Both methods 
are communication-efficient, necessitating only two rounds of communication between the 
Master and worker machines, and safeguard data privacy by solely sharing summary statistics. 
Under mild conditions, we establish the 𝓁2-error bound and the asymptotic distribution of the 
estimators. Theoretical analysis confirms that the proposed estimators are statistically efficient. 
Additionally, numerical simulations and two real-world applications demonstrate the good 
performance of the proposed methods.

. Introduction

In various fields, individual entities such as local governments, hospitals, and research labs collect data independently. For 
nstance, in financial studies, it is common for data to be stored across different bank branches. Some studies focus on integrating 
he raw data for analysis (Tang and Song, 2016; Huang et al., 2017). While these integrative methods can be effective, they are 
ot always practical due to privacy concerns and the high communication costs. Breach of privacy resulting from data sharing has 
ndeed become a growing concern in scientific studies, leading to the development of various privacy protection schemes (Cai et al., 
022; Chen et al., 2024). Aggregation technologies offer an alternative, enabling collaborative machine learning without requiring 
he sharing of raw data (Zhang et al., 2021).
Distributed learning approach, as a prominent framework for aggregation, seeks to train a global model by aggregating summary 

tatistics from all clients. This approach addresses crucial topics such as M-estimation (Lin and Xi, 2011; Zhang et al., 2012; Liu and 
hler, 2014; Huang and Huo, 2019; Jordan et al., 2019), penalized regression (Chen and Xie, 2014; Lee et al., 2017; Battey et al., 
018), semi-parametric regression (Lv and Lian, 2022), quantile regression (Volgushev et al., 2019; Chen et al., 2019; Yang et al., 
023), principal component analysis (Garber et al., 2017; Fan et al., 2019).
The distributed algorithms discussed above assume that data across worker machines are randomly distributed. While this 

ssumption simplifies theoretical analysis, it may prove overly restrictive in practice, as deviations from randomness can induce 
ignificant heterogeneity. To overcome the non-randomness across different datasets, several studies have been developed (Wang 
t al., 2021; Pan et al., 2022; Wang et al., 2022). These approaches result in statistically efficient estimators, regardless of whether 
he data are randomly distributed. However, these current methods require the transfer of a portion of the raw data, which risks 
rivacy breaches.
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In this paper, our objective is to develop distributed estimation methods specifically for non-randomly distributed data, with a 
focus on privacy protection. The proposed methods entails two rounds of communication between the Master and workers. In the 
first round, each worker computes the local maximum likelihood estimator (MLE) and sends the result to the Master. The Master 
then derives a KL estimate by minimizing the sum of KL divergences across all local models, using a pilot sample obtained through a 
parametric bootstrap procedure. In the second round, one-step update is applied to the KL estimate to achieve the optimal statistical 
efficiency. We employ two distinct update strategies for the KL estimate, to accommodate varying levels of communication cost 
and data privacy protection, resulting in two new distributed estimators: the Privacy-preserving Communication-Efficient Estimator 
(PCEE) and the Privacy-preserving Communication-Efficient Surrogate Estimator (PCESE). Both algorithms ensure data privacy by 
avoiding the transfer of raw data. Under mild conditions, we theoretically demonstrate that both of the proposed estimators achieve 
the same asymptotic efficiency as the global estimator. Their performance is studied through numerical simulations and a real data 
example.

The rest of this paper is organized as follows. Section 2 describes the problem setup and details of the proposed PCEE and PCESE 
methods. Theoretical properties of the PCEE and PCESE algorithms are shown in Section 3. In Section 4 and Section 5, we provide 
simulation results and real-world dataset examples to validate the finite sample performance of the proposed methods. Section 6 is 
the conclusion. The proof of the main results is given in Appendix.

2. The proposed estimation

2.1. Problem setup

Let {𝑍𝑖}𝑁𝑖=1 be a data set comprising 𝑁 independent observations sampled from the distribution of 𝑍 = (𝑌 ,𝑋), where 𝑍𝑖 = (𝑌𝑖, 𝑋𝑖). 
Here 𝑌𝑖 ∈ R1 is the response of interest and 𝑋𝑖 ∈ R𝑝 is the associated 𝑝-dimensional predictor. Conditional on 𝑋𝑖, assume that 𝑌𝑖
is randomly distributed with a probability density function 𝑝 (𝑌𝑖|𝑋𝑖; 𝜃∗

)

, where 𝜃∗ ∈ 𝛩 ⊂ R𝑑 denotes the true parameter vector. Let 
𝑙(𝑍; 𝜃) = − log 𝑝 (𝑌 |𝑋 ; 𝜃) be the loss function. Define the global loss function as 

𝐿(𝜃) = 1
𝑁

𝑁
∑

𝑖=1
𝑙(𝑍𝑖; 𝜃). (1)

Then minimizing (1) results in an estimator of 𝜃∗, i.e., 𝜃 = argmin𝜃∈𝛩 𝐿(𝜃), referred to as the global estimator. In distributed 
computing systems, the dataset {𝑍𝑖}𝑁𝑖=1 is typically partitioned across 𝐾 worker nodes rather than being stored on a single machine. 
Specifically, let 𝑘 be the index set of samples stored on the 𝑘-th worker, and let 𝑛𝑘 = |𝑘| denote the sample size of the 𝑘-th worker 
node such that ∪𝐾

𝑘=1𝑘 = {1,… , 𝑁}, ∑𝐾
𝑘=1 𝑛𝑘 = 𝑁 , 𝑘1 ∩ 𝑘1 = ∅ for any 𝑘1 ≠ 𝑘1. The corresponding data subset stored on the 𝑘-th 

node can then be represented as {𝑍𝑖 ∶ 𝑖 ∈ 𝑘} = {𝑍𝑘1,… , 𝑍𝑘𝑛𝑘}.
Clearly, for the case of the randomly distributed data, that is, 1,…, 𝐾 are randomly partitioned from {1,… , 𝑁} given the 

sample sizes 𝑛1,… , 𝑛𝐾 , and all local densities are the same as the global density function 𝑝(𝑌 |𝑋; 𝜃). The global parameter vector 𝜃∗
can be estimated using well-established distributed estimation frameworks within the proposed approaches (see Zhang et al., 2012; 
Jordan et al., 2019; Huang and Huo, 2019).

However, real-world distributed systems, such as regional healthcare data partnerships or multi-center clinical trial networks, 
often exhibit non-random data distribution, meaning their characteristic alignment does not follow random partitioning. For the 
non-randomly distributed data, the sample index sets 1,…, 𝐾 follow prescribed storage strategies. For example, the Census 
Income dataset analyzed in Section 5.2 is naturally divided by individuals’ education levels. Since people with similar educational 
backgrounds tend to cluster geographically in both residential and occupational patterns, this partitioning introduces heterogeneity. 
Therefore, we consider a heterogeneous statistical environment where local densities may vary across workers.

Without loss of generality, we assume that the 𝑘th local density of 𝑌  given 𝑋 and 𝑊𝑘 is 𝑝𝑘(𝑌 |𝑋,𝑊𝑘; 𝛽𝑘), where 𝑊𝑘 represents 
the worker-specific covariate vector for the 𝑘-th node, 𝛽𝑘 is determined by a shared parameter vector 𝜃 and the 𝑘-th worker-specific 
parameter vector 𝛾𝑘, denoted as 𝛽𝑘 = 𝛽𝑘(𝜃, 𝛾𝑘). Thus, the global density 𝑌  can be represented as 

𝑝 (𝑌 |𝑋; 𝜃) =
𝐾
∑

𝑘=1
∫ 𝑝𝑘(𝑌 |𝑋,𝑊𝑘; 𝛽𝑘)𝑓𝑘(𝑊𝑘|𝑋)𝑑𝑊𝑘, (2)

where 𝑓𝑘(𝑊𝑘|𝑋) is the 𝑘-th local density of 𝑊𝑘 given 𝑋. If 𝑊𝑘 and 𝑋 are independent, then 𝑓𝑘(𝑊𝑘|𝑋) = 𝑓𝑘(𝑊𝑘). This formulation 
generalizes several common assumptions found in the literature. For example, Zhu et al. (2021) assumed that all local densities 
share the same functional form and the covariate set as the global model, differing only in their parameters (i.e., 𝑝𝑘(𝑌|𝑋,𝑊𝑘; 𝛽𝑘) =
𝑝(𝑌 |𝑋; 𝛽𝑘) with 𝛽𝑘 = 𝜃+ 𝛾𝑘). Gu and Chen (2023) consider the case that the local densities may differ in functional form and partial 
parameters, but share the same covariate set (i.e., 𝑝𝑘(𝑌 |𝑋,𝑊𝑘; 𝛽𝑘) = 𝑝𝑘(𝑌 |𝑋; 𝛽𝑘) with 𝛽𝑘 = (𝜃, 𝛾𝑘) to separate shared and worker-
specific effects). In contrast, Duan et al. (2022) assumed that local densities may differ from the global model in both functional 
form and covariate sets, with parameter structure, where 𝑝𝑘(𝑌 |𝑋,𝑊𝑘; 𝛽𝑘) = 𝑝𝑘(𝑌 |𝑋,𝑊𝑘; 𝛽𝑘) with 𝛽𝑘 = (𝜃, 𝛾𝑘). 

Denote by {𝑌𝑘𝑖, 𝑋𝑘𝑖,𝑊𝑘𝑖}
𝑛𝑘
𝑖=1 the sample at the 𝑘-node. We will propose two distributed estimation methods for global parameter 

vector 𝜃 under non-randomly distributed data in the following subsections.
2 
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2.2. The PCEE algorithm

This approach involves two rounds of communication between the Master and worker machines.
In the first round, we compute a KL estimate of 𝜃∗ by minimizing the KL divergence between the global distribution 𝑝(𝑌 |𝑋; 𝜃)

and  the estimated distribution 𝑝0(𝑌 |𝑋) =
∑𝐾

𝑘=1 ∫ 𝑝𝑘(𝑌 |𝑋,𝑊𝑘; 𝛽𝑘)𝑓𝑘(𝑊𝑘|𝑋)𝑑𝑊𝑘,  that is

𝜃∗𝐾𝐿 = argmin
𝜃∈𝛩 ∫ 𝑝0(𝑌 |𝑋) log

𝑝0(𝑌 |𝑋)
𝑝(𝑌 |𝑋; 𝜃)

𝑑𝑌

= argmax
𝜃∈𝛩 ∫ 𝑝0(𝑌 |𝑋) log 𝑝(𝑌 |𝑋; 𝜃)𝑑𝑌 , (3)

where 𝛽𝑘 is the local MLE of 𝛽𝑘 for the 𝑘th worker node, given by

𝛽𝑘 = arg max
𝛽𝑘∈B𝑘

1
𝑛𝑘

𝑛𝑘
∑

𝑖=1
log 𝑝𝑘(𝑌𝑘𝑖|𝑋𝑘𝑖,𝑊𝑘𝑖; 𝛽𝑘).

Since 𝜃∗𝐾𝐿 is not computationally tractable in most cases, we adopt the parametric bootstrap procedure to estimate it. Firstly, 
a sample {𝑌𝑘𝑖}𝑛̃𝑘𝑖=1 is generated from each local model 𝑝𝑘(𝑌 |𝑋̃𝑘𝑖, 𝑊̃𝑘𝑖; 𝛽𝑘) on the Master node,  where 𝑛̃𝑘 = 𝑛𝑘

𝑁 × 𝑛0, and 𝑛0 is the 
pre-determined sample size of bootstrap pilot sample size, {(𝑋̃𝑘𝑖, 𝑊̃𝑘𝑖)}

𝑛̃𝑘
𝑖=1 are drawn from the density 𝑓𝑘(𝑋,𝑊𝑘). Here 𝑓𝑘(𝑋,𝑊𝑘)

is the density of (𝑋,𝑊𝑘) on the 𝑘th worker node.  Combining them together produces a pilot bootstrap sample on the Master, 
{𝑍̃𝑖}

𝑛0
𝑖=1 =

⋃

{𝑍̃𝑘𝑖}
𝑛̃𝑖
𝑖=1, where 𝑍̃𝑘𝑖 = (𝑌𝑘𝑖, 𝑋̃𝑘𝑖). Subsequently, we obtain an estimate of 𝜃∗𝐾𝐿 by solving the optimization problem: 

𝜃̂𝐾𝐿 = argmax
𝜃∈𝛩

1
𝑛0

𝐾
∑

𝑘=1

( 𝑛̃𝑘
∑

𝑖=1
log 𝑝(𝑌𝑘𝑖|𝑋̃𝑘𝑖; 𝜃)

)

= argmin
𝜃∈𝛩

𝐿(𝜃), (4)

where 𝐿(𝜃) = 1
𝑛0

∑𝐾
𝑘=1

∑𝑛̃𝑘
𝑖=1 𝑙(𝑍̃𝑘𝑖; 𝜃).

Unlike the method proposed by Wang et al. (2021), which requires transferring partial raw data as pilot samples, our method 
constructs the pilot sample from 𝐾 bootstrap samples generated from the estimated densities 𝑝𝑘(⋅; 𝛽𝑘) on the master node, thus 
effectively reducing privacy risks.

Algorithm 1 The PCEE algorithm 
 Round 1: Compute KL Estimate
1. For Worker 𝑘 = 1,… , 𝐾 do:
 Compute and broadcast 𝛽𝑘; .
2. For Master do:
 (1) draw samples {𝑋̃𝑘𝑖, 𝑊̃𝑘𝑖}

𝑛̃𝑘
𝑖=1 from the density 𝑓𝑘(𝑋,𝑊𝑘) for 𝑘 = 1,… , 𝐾;

 (2) Generate the bootstrap samples {𝑌𝑘𝑖}𝑛̃𝑖=1 from the estimated local model
 𝑝𝑘(𝑌 |𝑋̃𝑘𝑖, 𝑊̃𝑘𝑖; 𝛽𝑘) for 𝑘 = 1,… , 𝐾 ;
 (3) Compute and broadcast the KL estimate:
 𝜃̂𝐾𝐿 = argmax𝜃∈𝛩

1
𝑛0

∑𝐾
𝑘=1

∑𝑛̃𝑘
𝑖=1 log 𝑝(𝑌𝑘𝑖|𝑋̃𝑘𝑖; 𝜃).

 Round 2: Compute the PCEE Estimate
1. For Worker 𝑘 = 1,… , 𝐾 do:
  Compute and broadcast the gradient vector and Hessian matrix at the 𝜃̂𝐾𝐿:
 ∇𝐿𝑘(𝜃̂𝐾𝐿) =

1
𝑛𝑘

∑

𝑖∈𝑘 ∇𝑙(𝑍𝑖; 𝜃̂𝐾𝐿) and ∇2𝐿𝑘(𝜃̂𝐾𝐿) =
1
𝑛𝑘

∑

𝑖∈𝑘 ∇
2𝑙(𝑍𝑖; 𝜃̂𝐾𝐿);

2. For Master do:
 (1) Sum the derivatives respectively:
 ∇𝐿(𝜃̂𝐾𝐿) =

1
𝐾
∑

𝑘 ∇𝐿𝑘(𝜃̂𝐾𝐿)  and ∇2𝐿(𝜃̂𝐾𝐿) =
1
𝐾
∑

𝑘 ∇2𝐿𝑘(𝜃̂𝐾𝐿);
 (2) Compute the one-step Newton–Raphson update for 𝜃̂𝐾𝐿 :
 𝜃̂𝑃𝐶𝐸𝐸 = 𝜃̂𝐾𝐿 −

(

∇2𝐿(𝜃̂𝐾𝐿)
)−1 ∇𝐿(𝜃̂𝐾𝐿).

In the second round, an additional update step is implemented. We take 𝜃̂𝐾𝐿 as the initial point and apply Newton–Raphson one-
step update. Specifically, the Master broadcasts 𝜃̂𝐾𝐿 to the workers, then each worker compute the first-order derivatives ∇𝐿𝑘(𝜃̂𝐾𝐿)
and the second-order derivatives ∇2𝐿𝑘(𝜃̂𝐾𝐿) and report these derivatives back to the Master, where

𝐿𝑘(𝜃̂𝐾𝐿) =
1
𝑛𝑘

𝑛𝑘
∑

𝑖=1
𝑙(𝑍𝑘𝑖; 𝜃̂𝐾𝐿).

Finally, the Master performs one-step update to refine 𝜃̂𝐾𝐿, resulting in a more accurate estimate: 

𝜃̂𝑃𝐶𝐸𝐸 = 𝜃̂𝐾𝐿 −

(

1
𝐾
∑

∇2𝐿𝑘(𝜃̂𝐾𝐿)

)−1
1

𝐾
∑

∇𝐿𝑘(𝜃̂𝐾𝐿). (5)

𝐾 𝑘=1 𝐾 𝑘=1

3 
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The detailed algorithm of the PCEE is described in Algorithm 1, where the density 𝑓𝑘(𝑋,𝑊𝑘) on the is assumed to be known. If they 
are unknown, they can be replaced with the estimated densities 𝑓𝑘(𝑋,𝑊𝑘)s on the 𝑘th node.

Note that computing 𝜃̂𝑃𝐶𝐸𝐸 requires each node worker to transfer a 𝑑 × 𝑑-dimensional Hessian matrix to the Master node. To 
further reduce both communication costs and second-order information exposure risks, we adopt a surrogate likelihood function 
approach following Jordan et al. (2019) to update 𝜃̂𝐾𝐿, which leads to our proposed PCESE algorithm in the following subsection.

2.3. The PCESE algorithm

The PCESE algorithm also involves two rounds of communication. The first round is the same with that of the PCEE algorithm, 
we obtain the initial estimate 𝜃̂𝐾𝐿 from (4). In the second round, we perform one-step update of 𝜃̂𝐾𝐿 using a surrogate likelihood 
function. By applying a Taylor expansion of 𝐿(𝜃) around the initial estimate 𝜃̂𝐾𝐿, we derive

𝐿(𝜃) = 𝐿(𝜃̂𝐾𝐿) + ⟨∇𝐿(𝜃̂𝐾𝐿), 𝜃 − 𝜃̂𝐾𝐿⟩ + 𝑅𝑁 (𝜃).

where 𝑅𝑁 (𝜃) =
∑∞

𝑗=2
1
𝑗!∇

𝑗𝐿(𝜃̂𝐾𝐿)(𝜃 − 𝜃̂𝐾𝐿)⊗𝑗 is the remainder term. However, transferring the higher-order derivatives across 
sites can be costly. Since the pilot bootstrap sample on the Master are independent and identically distributed, it holds that 
∇𝑗𝐿(𝜃̂𝐾𝐿) − ∇𝑗𝐿(𝜃̂𝐾𝐿) = 𝑜𝑃 (1) for any 𝑗 ∈ {0, 1,…}. This motivates us to replace the global remainder term 𝑅𝑁 (𝜃) with the 
pilot bootstrap sample version 𝑅(𝜃), that is

𝑅(𝜃) = 𝐿(𝜃) − 𝐿(𝜃̂𝐾𝐿) − ⟨∇𝐿(𝜃̂𝐾𝐿), 𝜃 − 𝜃̂𝐾𝐿⟩,

where 𝐿(𝜃) is defined in (4). Consequently, the approximation version 𝐿̃(𝜃) of 𝐿(𝜃) is given by
𝐿̃(𝜃) = 𝐿(𝜃̂𝐾𝐿) + ⟨∇𝐿(𝜃̂𝐾𝐿), 𝜃 − 𝜃̂𝐾𝐿⟩ + 𝐿(𝜃) − 𝐿(𝜃̂𝐾𝐿) − ⟨∇𝐿, 𝜃 − 𝜃̂𝐾𝐿⟩.

Removing the additive constants term, we redefine 𝐿̃(𝜃) as follows, 
𝐿̃(𝜃) = 𝐿(𝜃) − ⟨∇𝐿(𝜃̂𝐾𝐿) − ∇𝐿𝑁 (𝜃̂𝐾𝐿), 𝜃⟩. (6)

Thus, the PCESE estimator is obtained by minimizing 𝐿̃(𝜃), that is, 
𝜃̂𝑃𝐶𝐸𝑆𝐸 = argmin

𝜃∈𝛩
𝐿̃(𝜃). (7)

The minimization of 𝐿̃(𝜃) is carried out on the Master machine, while the workers only need to compute and transmit the local MLE 
and gradients. Therefore, the PCESE is more communication-efficient than the PCEE.

The detailed algorithm of the PCESE is described in Algorithm 2.

Algorithm 2 The PCESE algorithm 
 Round 1: Obtain 𝜃̂𝐾𝐿, which is same as the Round 1 of the PCEE algorithm.
 Round 2: Compute the PCESE Estimate
1. For Worker 𝑘 = 1,… , 𝐾 do:
  Compute and broadcast the gradient vector ∇𝐿𝑘(𝜃̂𝐾𝐿):

 ∇𝐿𝑘(𝜃̂𝐾𝐿) =
∑

𝑖∈𝑘 ∇𝑙(𝑍𝑖; 𝜃̂𝐾𝐿).

2. For Master do:
 (1) Compute the gradients ∇𝐿(𝜃̂𝐾𝐿) based on the pilot bootstrap sample and
  sum the gradients:
 ∇𝐿(𝜃̂𝐾𝐿) =

1
𝑛0

∑𝐾
𝑘=1

∑𝑛̃𝑘
𝑖=1 ∇𝑙(𝑍̃𝑘𝑖; 𝜃̂𝐾𝐿),

 ∇𝐿(𝜃̂𝐾𝐿) =
1
𝐾
∑

𝑘 ∇𝐿𝑘(𝜃̂𝐾𝐿);

 (2) Compute the surrogate loss function:
 𝐿̃(𝜃) = 𝐿(𝜃) − ⟨∇𝐿(𝜃̂𝐾𝐿) − ∇𝐿𝑁 (𝜃̂𝐾𝐿), 𝜃⟩;

 (3) Compute the surrogate estimate:
 𝜃̂𝑃𝐶𝐸𝑆𝐸 = argmin𝜃∈𝛩 𝐿̃(𝜃).

3. Theoretical results

In this section, we focus on the consistency and the asymptotic normality results of the proposed estimators, the proofs of 
theorems are given in Appendices. For convenience, we first pose some technical assumptions on the parameter space and the loss 
function.
4 
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Let 𝐵𝜌 = {𝜃 ∈ R𝑑 ∶ ‖𝜃 − 𝜃∗‖2 ≤ 𝜌} ⊂ 𝛩 be a ball of radius 𝜌 around the true parameter 𝜃∗. Similarly, let 𝐵𝑘
𝜂 = {𝛽𝑘 ∶ ‖𝛽𝑘 − 𝛽∗𝑘‖2 ≤

𝜂} ⊂ B𝑘 be a ball of radius 𝜂 around the true parameter 𝛽∗𝑘 for 𝑘 = 1, 2,… , 𝐾. For a vector 𝑣 ∈ R𝑑 , ‖𝑣‖2 = (
∑𝑑

𝑖=1 𝑣
2
𝑖 )

1∕2. For a matrix 
𝑉 ∈ R𝑑×𝑑 , ‖𝑉 ‖2 denote its maximum singular value, and ‖𝑉 ‖2 = sup𝑢∈R𝑑∶‖𝑢‖≤1 ‖𝑉 𝑢‖2. The notations 𝜆𝑚𝑖𝑛(𝑉 ) and 𝜆𝑚𝑎𝑥(𝑉 ) denote the 
minimum and maximum eigenvalues of the matrix 𝑉 , respectively.

Assumption 1.  The global parameter space 𝛩 ∈ R𝑑 and local parameter space 𝛩′
𝑘 ∈ R𝑑+𝑞𝑘  are compact convex sets, and 𝜃∗ is an 

interior point of 𝛩, 𝛽∗𝑘 is an interior point of 𝛩′
𝑘, 𝑘 = 1,… , 𝐾.

Assumption 2.  The population Hessian matrix 𝐼(𝜃) = E(∇2𝑙(𝑍; 𝜃)) is nonsingular at 𝜃∗: there exist two positive constants (𝜆−, 𝜆+)
such that 𝜆− ≤ 𝜆𝑚𝑖𝑛(𝐼(𝜃∗)) ≤ 𝜆𝑚𝑎𝑥(𝐼(𝜃∗)) ≤ 𝜆+.

Assumption 3.  There exist constants 𝐺, 𝐻 and a function 𝑀(𝑧) such that
E
[

‖∇𝑙(𝑍; 𝜃)‖82
]

≤ 𝐺8, E [‖∇2𝑙(𝑍; 𝜃) − 𝐼(𝜃)‖82] ≤ 𝐻8, for all 𝜃 ∈ 𝐵𝜌,

‖∇20𝑙(𝑍; 𝜃) − ∇2𝑙(𝑍; 𝜃′)‖2 ≤ 𝑀(𝑍)‖𝜃 − 𝜃′‖2, for all 𝜃, 𝜃′ ∈ 𝐵𝜌,

where 𝑀(𝑍) satisfies E [

𝑀(𝑍)8
]

≤ 𝑀8 for constant 𝑀 > 0.

Assumption 4.  For any positive constants 𝛿 and 𝜚, there exist 𝜀 > 0 and 𝜉 > 0, such that
lim inf
𝑁→∞

P { inf
‖𝜃−𝜃∗‖2≥𝛿

(

𝐿(𝜃) − 𝐿(𝜃∗)
)

≥ 𝜀} = 1;

lim inf
𝑛𝑘→∞

P { inf
‖𝛽𝑘−𝛽∗𝑘‖2≥𝜚

(

𝐿0𝑘(𝛽𝑘) − 𝐿0𝑘(𝛽∗𝑘 )
)

≥ 𝜉} = 1,

where 𝐿0𝑘(𝛽𝑘) =
1
𝑛𝑘

∑𝑛𝑘
𝑖=1{− log 𝑝𝑘(𝑌𝑘𝑖|𝑋𝑘𝑖,𝑊𝑘𝑖; 𝛽𝑘)}.

Assumption 5.  As 𝑁 → ∞, it has 𝑛𝑘 → ∞ for all 𝑘.

Assumption  1 specifies the relationship between the parameter space and the true parameter. Assumption  2 imposes a local 
identifiability condition, guaranteeing that 𝜃∗ is a local minimum. Assumption  3 puts a constraint on smoothness for 𝑙(𝑍; 𝜃). 
Assumption  4 is a identifiability condition, necessary for establishing the consistency of the estimator (Van der Vaart, 2000). 
Assumption  5 is a necessary condition that the ML estimator 𝛽𝑘 for each local model is consistent.

Theorem 1.  Under Assumptions  1–5, one has

𝜃̂𝑃𝐶𝐸𝐸 − 𝜃∗ = −𝐼(𝜃∗)−1 1
𝑁

𝐾
∑

𝑘=1

∑

𝑖∈𝑘

∇𝑙(𝑍𝑘𝑖; 𝜃∗) + 𝑂𝑃 (𝑛−10 ).

If 𝑛0∕
√

𝑁 → ∞ and 𝑁 → ∞, then the asymptotic normality of the PCEE estimator holds,
√

𝑁(𝜃̂𝑃𝐶𝐸𝐸 − 𝜃∗) →  (0, 𝛴)

where 𝛴 = 𝐼(𝜃∗)−1E[∇𝑙(𝑍; 𝜃∗)∇𝑙(𝑍; 𝜃∗)⊤]𝐼(𝜃∗)−1.

It can be concluded from Theorem  1 that the error 𝜃̂𝑃𝐶𝐸𝐸 − 𝜃∗ comprises two components: the variance term and the bias 
term. Remarkably, the variance order matches that of the global estimator 𝜃, which is 𝑂𝑃 (𝑁−1∕2). The bias term converges to 
zero at a rate of 1∕𝑛0. Therefore Theorem  1 indicates that the convergence rate of the 𝓁2 estimation error for PCEE estimator is 
‖𝜃̂𝑃𝐶𝐸𝐸 − 𝜃∗‖2 = 𝑂𝑃 (

√

1∕𝑁 + 1∕𝑛0). If the pilot bootstrap sample size is sufficiently large, the estimation efficiency will match that 
of the global estimator.

Theorem 2.  Suppose that Assumptions  1–5 holds, it has

‖𝜃̂𝑃𝐶𝐸𝑆𝐸 − 𝜃‖2 ≤ 𝐶2

(

‖𝜃̂𝐾𝐿 − 𝜃‖2 + ‖𝜃 − 𝜃∗‖2 + ‖∇2𝐿
(

𝜃∗
)

− ∇2𝐿
(

𝜃∗
)

‖2

)

‖𝜃̂𝐾𝐿 − 𝜃‖2,

with probability at least 1 − 𝐶1𝐾𝑛−40 , where 𝜃 is the global estimator and constants 𝐶1, 𝐶2 are independent of (𝐾, 𝑛0, 𝑁).

Under Assumptions  1–5, it can be inferred that ‖𝜃 − 𝜃∗‖2 = 𝑂𝑃 (𝑁−1∕2) and ‖∇2𝐿 (𝜃∗) − ∇2𝐿 (𝜃∗) ‖2 = 𝑂𝑃 (𝑛
−1∕2
0 ), where the 

second equality follows from Lemma  B.2 in Appendix  B. Thus, one has ‖𝜃̂𝑃𝐶𝐸𝑆𝐸 − 𝜃‖2 = 𝑂𝑃 (𝑛−10 ). 

Theorem 3.  Under Assumptions  1–5, the PCESE estimator defined in (7) satisfies

𝜃̂𝑃𝐶𝐸𝑆𝐸 − 𝜃∗ = −𝐼(𝜃∗)−1 1
𝑁

𝐾
∑ ∑

∇𝑙(𝑍𝑘𝑖; 𝜃∗) + 𝑂𝑃 (𝑛−10 ).

𝑘=1 𝑖∈𝑘

5 
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If 𝑛0∕
√

𝑁 → ∞ and 𝑁 → ∞, then the asymptotic normality of the PCESE estimator holds,
√

𝑁(𝜃̂𝑃𝐶𝐸𝑆𝐸 − 𝜃∗) →  (0, 𝛴),

where 𝛴 = 𝐼(𝜃∗)−1E[∇𝑙(𝑍; 𝜃∗)∇𝑙(𝑍; 𝜃∗)⊤]𝐼(𝜃∗)−1.

Theorems  1 and 3 show that 𝜃̂𝑃𝐶𝐸𝑆𝐸 and 𝜃̂𝑃𝐶𝐸𝐸 share the same asymptotic distribution. In other words, for sufficiently large 
values of 𝑁 and 𝑛0, 𝜃̂𝑃𝐶𝐸𝑆𝐸 can perform as effectively as 𝜃̂𝑃𝐶𝐸𝐸 , while maintaining lower communication costs. Moreover, both 
the 𝜃̂𝑃𝐶𝐸𝑆𝐸 and 𝜃̂𝑃𝐶𝐸𝐸 can be as efficient as the global estimator in the sense of that they enjoy the same asymptotic distribution.

4. Numerical simulation

In this section, we conduct simulations to demonstrate the performance of the two proposed estimators. We consider two regimes: 
(1) the number of Workers, 𝐾, is fixed at 𝐾 = 10, and the whole sample sizes, 𝑁 , ranges from 1 × 104 to 7 × 104; (2) the whole 
sample sizes, 𝑁 , is fixed at 𝑁 = 2 × 104, while the number of Workers, 𝐾, varies from 2 to 200. The sample size of each worker 
is the same as 𝑛 = 𝑁∕𝐾. And Unbalanced case is given in Section 5.2. Across all data generative models, we fix the dimension of 
covariate 𝑑 = 5. We set the pilot bootstrap sample size 𝑛0 = 𝑁 × 5%. We consider three data-generating mechanisms:

(i) Logistic Regression Model. For each sample 𝑖 ∈ 𝑘, the covariate 𝑋𝑖 is generated from a multivariate normal distribution 
with mean zero and covariance matrix 𝛼𝑘𝛴0, where 𝛴0 = (𝜎𝑗1𝑗2 ) ∈ R5×5 with 𝜎𝑗1𝑗2 = 0.5||𝑗1−𝑗2|| and 𝛼𝑘 is a constant. Given 𝑋𝑖, the 
response 𝑌𝑖 is generated from a logistic regression model. That is, 𝑌𝑖 ∈ {0, 1} is a binary response variable with 

𝑃
(

𝑌𝑖 = 1 ∣ 𝑋𝑖
)

= exp(𝑋⊤
𝑖 𝜃)∕

{

1 + exp(𝑋⊤
𝑖 𝜃)

}

. (8)

The true parameter 𝜃 = (0, 0,−0.1, 0.1, 0).
(ii) Poisson Regression Model. Same as the mechanism (i), the covariate 𝑋𝑖 is generated from a multivariate normal distribution 

with mean zero and covariance matrix 𝛼𝑘𝛴0, where 𝛴 = (𝜎𝑗1𝑗2 ) ∈ R5×5 with 𝜎𝑗1𝑗2 = 0.5||𝑗1−𝑗2|| and 𝛼𝑘 is a constant. Given 
𝑋𝑖, the response 𝑌𝑖 is generated from a Poisson distribution as 𝑃 (

𝑌𝑖 = 𝑚 ∣ 𝑋𝑖, 𝜃
)

= 𝜆𝑚𝑖 exp
(

−𝜆𝑖
)

∕𝑚!, where 𝜆𝑖 = exp
(

𝑋⊤
𝑖 𝜃

) and 
𝜃 = (0, 0,−0.2, 0.5, 0).

(iii) Mis-specified Model. Suppose an experimenter postulates the logistic regression model for the sample of observations 
𝑍1,… , 𝑍𝑛. However, the true underlying model is the probit regression model. The true parameter 𝜃 = (0, 0,−0.1, 0.1, 0) is the same 
as the mechanism (i).

To study the performance of the proposed estimators in a non-randomly distributed mechanism, we consider four data-allocating 
cases. In the first case, data on different workers are randomly distributed. This is the ideal Case which is assumed by most distributed 
algorithms. The Case II allows the data stored on different workers to be heterogeneous, while the regression relationship remains 
the same. The Case III allows that the data allocation mechanism is related to the 𝑋. For Case IV, the data allocation mechanism is 
related to both the predictors 𝑌  and the covariates 𝑋, resulting in a non-random distribution of the entire dataset across 𝐾 workers. 
The four data allocation mechanisms are as follows:

Case I. Set 𝛼𝑘 = 1, the data on different workers are randomly distributed.
Case II. Set 𝛼𝑘 = 1∕𝑘 for 𝑘 = 1,… , 𝐾. Thus, the randomness of the distributed data is violated, while the conditional regression 

relationship 𝑌𝑖 ∣ 𝑋𝑖 remains the same for various workers.
Case III. The storage location of each observation depends on its first covariate. Specifically, let 𝑋(𝑖)1 be the 𝑖th order index of 

𝑋𝑖1, 𝑖 = 1,… , 𝑁 , and the (𝑖)th observation (𝑋(𝑖), 𝑌(𝑖)) is allocated on the 𝑘th local machine if it satisfies (𝑖) ∈ [(𝑘 − 1)𝑛 + 1, 𝑘𝑛].
Case IV. Let 𝑈𝑖 = 𝑌𝑖 +𝑋𝑇

𝑖 𝛾 with 𝛾 = (1,… , 1)⊤ ∈ R𝑑 . sorting the whole sample according to 𝑈𝑖. Let 𝑈(1) ≤ ⋯ ≤ 𝑈(𝑁) be the order 
index statistic of the 𝑈𝑖s. The (𝑖)th observation (𝑋(𝑖), 𝑌(𝑖)) is assigned on the 𝑘th local machine if it satisfies (𝑖) ∈ [(𝑘 − 1)𝑛 + 1, 𝑘𝑛].

To make the evaluation reliable, we compare the PCEE and the PCESE estimators with:

• GLO: the global estimator which minimizes the global loss function (1).
• AVG: the average estimator proposed by Zhang et al. (2012).
• CSL: the Communication-efficient Surrogate Likelihood estimator proposed by Jordan et al. (2019).
• DOS: Distributed One-Step estimator proposed by Huang and Huo (2019).
• DLSA: the Distributed Least-Square Approximation estimator proposed by Zhu et al. (2021).
• OSUP: One-Step Upgraded Pilot estimator proposed by Wang et al. (2021).
Among these distributed estimators, only the OSUP estimator is designed for non-randomly distributed data, which requires 

transferring a proportion of raw data as a pilot sample. The simulation is repeated 𝐵 = 500 times. We examine the MSE of each 
estimator, namely, MSE(𝜃̂) = 𝐵−1 ∑𝐵

𝑏=1 ‖𝜃̂(𝑏) − 𝜃‖22.

4.1. Effects of the total sample size

Figs.  1–2 depict the MSE for the 8 estimators versus the varying total sample size 𝑁 = 104𝛿 (𝛿 = 1,… , 7) in logistic regression 
and Poisson regression models, respectively. Based on our analysis, we could draw the following conclusions.

First of all, when the data are randomly distributed across local sites in Case I, all the estimators exhibit similar performance 
with the GLO estimator. In terms of communication complexity, the DOS, OSUP, DLSA and PCEE methods require at least 𝑂(𝑝2) bits 
6 
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Fig. 1. The logarithm of the MSE for all estimators in logistic regression varies with the full sample size 𝑁 , with the number of worker 𝐾 is fixed at 𝐾 = 10. 
In all cases, each point represents the average of 500 replications. In Case I, the whole data is split randomly. The Case II, the data is heterogeneous. The data 
allocation mechanism in Case III depends solely on predictors 𝑋, while in Case IV, it depends on both predictors 𝑋 and the response 𝑌 .

of communication, whereas the AVG, CSL, and our proposed PCESE methods only require 𝑂(𝑝) bits. However, for heterogeneous 
data in Case II, the discrepancies among various estimators become more pronounced. Among them, the PCEE, PCESE, DOS and 
OSUP estimators perform similarly, while the CSL and AVG estimators is inferior to the others because their MSEs do not approach 
that of the GLO estimator as the 𝑁 increases again. And the DLSA estimator is sensitive to the regression model, it performs as well 
as the GLO estimator under the logistic regression model, but worst under the Poisson regression model.

In Cases III and IV, where the randomness condition is strongly violated, it is more clear that the proposed estimators, the PCEE 
and the PCESE, are superior to other distributed estimators. In Case III, where the data allocation mechanism depends on 𝑋𝑖, the 
PCEE and PCESE uniformly outperform both the CSL and the AVG estimators. In Case IV, where data allocation depends on both 𝑋𝑖
and 𝑌𝑖, only our methods and the OSUP estimator achieve performance comparable to the GLO estimator, significantly outperforming 
the DOS, CSL, AVG and DLSA estimators. It is worthy noting that the OSUP estimator requires transferring a proportion of raw data 
from work machines to the Master machine, while our methods require only the transmission of statistics. The privacy preservation 
and communication efficiency highlight the advantages over the OSUP. When the size of the pilot bootstrap sample, 𝑛0, is small, the 
approximation error is relatively significant. However, this issue can be mitigated by generating a larger pilot bootstrap sample on 
the Master. Increasing 𝑛0 will not elevate the communication cost of the proposed methods, but it will increase the communication 
cost of the OSUP. This highlights a significant advantage of our methods over the OSUP. Figs.  1–2 also show that the PCESE slightly 
underperforms the PCEE and OSUP, with the difference in MSEs between the two estimators approaching zero as 𝑁 increases, 
except in the scenario involving Poisson regression variables in Case IV. However, the PCESE outperforms the PCEE and OSUP in 
communication costs by eliminating the need for workers to transmit their Hessian matrices to the Master.
7 
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Fig. 2. The logarithm of the MSE for all estimators in Poisson regression varies with the full sample size 𝑁 , with the number of worker 𝐾 is fixed at 𝐾 = 10. 
In all cases, each point represents the average of 500 replications. In Case I, the whole data is split randomly. The Case II, the data is heterogeneous. The data 
allocation mechanism in Case III depends solely on predictors 𝑋, while in Case IV, it depends on both predictors 𝑋 and the response 𝑌 .

4.2. Effects of number of local machines

In this subsection, we examine the performance of the proposed and other competing estimators versus the different number 
of local machines. Tables  1–2 report the logarithm of MSEs of the different estimators versus the number of machines, 𝐾, ranging 
from 2 to 200 for Logistic regression and Poisson regression models, respectively. The total sample size, 𝑁 , is fixed at 𝑁 = 2 × 104. 
In all cases, each cell in the table corresponds to the average of 500 replications. From Tables  1–2, it can be observed that our 
methods perform almost as well as the GLO estimator in all scenarios. In cases II-IV, the AVG, CSL, DOS, and DLSA estimators fail 
in succession.

4.3. Effects of mis-specified model

To further evaluate the robustness of our methods, we conducted a model misspecification analysis. Specifically, given 𝑋𝑖, the 
binary response 𝑌  was generated from a probit model with

𝑃
(

𝑌𝑖 = 1 ∣ 𝑋𝑖
)

= 𝛷(𝑋⊤
𝑖 𝜃),

where 𝛷 denotes the cumulative distribution function of the standard normal distribution. However, the parameter estimation was 
performed using a logistic regression model (8), introducing model misspecification.

Fig.  3 presents the log-MSEs of the all estimators. Notably, all estimators show higher MSE values compared to the correctly 
specified case in Fig.  1, reflecting the inherent bias caused by model misspecification. Nevertheless, the proposed PCEE and PCESE 
8 
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Table 1
The logarithm of MSE of the different estimators in Poisson regression model versus the number of machines 𝐾 ranging for 2 
to 200.
 Case Method 𝐾

 2 10 50 100 200  
 𝐈 PCEE −6.185 −6.179 −6.162 −6.104 −6.177 
 PCESE −6.065 −6.086 −6.053 −5.979 −5.845 
 AVG −3.620 −4.440 −4.314 −4.339 −4.332 
 CSL −6.141 −6.152 −5.953 −5.582 −5.379 
 DOS −6.170 −6.176 −6.168 −6.100 −6.174 
 DLSA −6.116 −6.112 −6.148 −6.156 −6.217 
 OSUP −6.173 −6.162 −6.172 −6.098 −6.177 
 GLO −6.168 −6.169 −6.158 −6.086 −6.163 
 𝐈𝐈 PCEE −5.629 −4.913 −4.219 −3.542 −3.067 
 PCESE −5.534 −4.680 −3.866 −3.123 −2.494 
 AVG −3.582 −4.230 −3.807 −3.533 −3.025 
 CSL −5.249 −4.680 −3.935 −3.617 −3.069 
 DOS −5.620 −4.925 −4.255 −3.635 −3.210 
 DLSA −5.545 −4.880 −4.281 −3.686 −3.326 
 OSUP −5.611 −4.959 −4.166 −3.661 −3.058 
 GLO −5.620 −4.920 −4.253 −3.633 −3.213 
 𝐈𝐈𝐈 PCEE −6.219 −6.133 −6.178 −6.155 −6.147 
 PCESE −6.133 −5.967 −6.076 −6.010 −6.029 
 AVG −3.606 −3.557 −1.774 −0.547 0.399  
 CSL −4.790 −1.994 2.128 8.005 20.436 
 DOS −6.230 −6.105 −2.839 0.803 3.619  
 DLSA −6.142 −6.009 −6.170 −6.136 −6.156 
 OSUP −6.219 −6.144 −6.183 −6.153 −6.161 
 GLO −6.222 −6.132 −6.176 −6.164 −6.145 
 𝐈𝐕 PCEE −6.171 −6.187 −6.083 −6.194 −6.065 
 PCESE −6.110 −6.065 −5.995 −6.061 −5.962 
 AVG −1.439 9.899 5.355 5.288 5.264  
 CSL −0.149 26.927 58.653 46.244 42.569 
 DOS −2.617 21.516 17.993 17.643 17.531 
 DLSA −5.800 12.159 −2.712 −2.574 −2.422 
 OSUP −6.171 −6.187 −6.088 −6.204 −6.062 
 GLO −6.164 −6.176 −6.080 −6.192 −6.061 
Note: The total sample size 𝑁 is fixed at 𝑁 = 2 × 104. In all cases, each cell in the table corresponds to the average of 500 
replications.

estimators maintain performance comparable to the global estimator, particularly for large sample size 𝑁 . Furthermore, Additionally, 
iterative updating further improves the accuracy of the proposed estimators.

To validate the accuracy improvement from iterative updating, we conducted an experiment with a fixed total sample size 
(𝑁 = 10 000) distributed across 𝐾 = 10 local machines. The pilot sample size was determined by 𝑛0 = 𝑁 × 𝜋, where 𝜋 = 0.01
represents the bootstrap pilot sampling proportion, yielding 𝑛0 = 100. With a covariate dimension of 𝑝 = 5, we compared the MSEs 
of the GLO estimator against multi-step PCEE and PCESE estimators. Table  3 presents the MSEs of the GLO and multi-step PCEE, 
PCESE estimators. Table  3 shows that iterative updating significantly enhances accuracy. Notably, while all multi-step estimators 
outperform their initial versions, the 2-step PCEE and 4-step PCESE estimators achieve MSEs comparable to the GLO estimator in 
this experimental setup.

4.4. Effects of the pilot sample size

We conduct a simulation study to assess the impact of pilot sample size (𝑛0 = 𝑁 × 𝜋, where 𝜋 = 1%, 5%, 10%, 20%) on the MSEs 
of our proposed distributed estimators. The experiment maintains fixed sample size 𝑁 = 10 000 distributed across 𝐾 = 10 local 
machines, while varying the bootstrap sampling proportion 𝜋. The empirical results in Table  4 demonstrate that the performance 
gap between estimators decreases monotonically with increasing pilot sampling proportion 𝜋. Notably, at 𝜋 = 5%, MSE values of 
both proposed estimators approach that does the GLO. This convergence suggests that the proposed methods attain asymptotic 
equivalence to the global estimator with moderate pilot sampling. 

4.5. Compared with federated learning algorithm

Federated Learning (FL) approaches also address the challenge of data non-randomness, particularly under constraints of privacy 
and limited communication. Among them, the FedAvg algorithm (McMahan et al., 2017) addresses non-IID (non-independent and 
identically distributed) data by employing an iterative model averaging strategy. In this section, we compare the performance of 
9 
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Table 2
The logarithm of MSE of the different estimators in Poisson regression model versus the number of machines 𝐾 ranging for 2 
to 200.
 Case Method 𝐾

 2 10 50 100 200  
 𝐈 PCEE −6.185 −6.179 −6.162 −6.104 −6.177 
 PCESE −6.065 −6.086 −6.053 −5.979 −5.845 
 AVG −3.620 −4.440 −4.314 −4.339 −4.332 
 CSL −6.141 −6.152 −5.953 −5.582 −5.379 
 DOS −6.170 −6.176 −6.168 −6.100 −6.174 
 DLSA −6.116 −6.112 −6.148 −6.156 −6.217 
 OSUP −6.173 −6.162 −6.172 −6.098 −6.177 
 GLO −6.168 −6.169 −6.158 −6.086 −6.163 
 𝐈𝐈 PCEE −5.629 −4.913 −4.219 −3.542 −3.067 
 PCESE −5.534 −4.680 −3.866 −3.123 −2.494 
 AVG −3.582 −4.230 −3.807 −3.533 −3.025 
 CSL −5.249 −4.680 −3.935 −3.617 −3.069 
 DOS −5.620 −4.925 −4.255 −3.635 −3.210 
 DLSA −5.545 −4.880 −4.281 −3.686 −3.326 
 OSUP −5.611 −4.959 −4.166 −3.661 −3.058 
 GLO −5.620 −4.920 −4.253 −3.633 −3.213 
 𝐈𝐈𝐈 PCEE −6.219 −6.133 −6.178 −6.155 −6.147 
 PCESE −6.133 −5.967 −6.076 −6.010 −6.029 
 AVG −3.606 −3.557 −1.774 −0.547 0.399  
 CSL −4.790 −1.994 2.128 8.005 20.436 
 DOS −6.230 −6.105 −2.839 0.803 3.619  
 DLSA −6.142 −6.009 −6.170 −6.136 −6.156 
 OSUP −6.219 −6.144 −6.183 −6.153 −6.161 
 GLO −6.222 −6.132 −6.176 −6.164 −6.145 
 𝐈𝐕 PCEE −6.171 −6.187 −6.083 −6.194 −6.065 
 PCESE −6.110 −6.065 −5.995 −6.061 −5.962 
 AVG −1.439 9.899 5.355 5.288 5.264  
 CSL −0.149 26.927 58.653 46.244 42.569 
 DOS −2.617 21.516 17.993 17.643 17.531 
 DLSA −5.800 12.159 −2.712 −2.574 −2.422 
 OSUP −6.171 −6.187 −6.088 −6.204 −6.062 
 GLO −6.164 −6.176 −6.080 −6.192 −6.061 
Note: The total sample size 𝑁 is fixed at 𝑁 = 2 × 104. In all cases, each cell in the table corresponds to the average of 500 
replications.

Table 3
MSEs of multiple iterative estimators.
 Estimator Multi-step

 1-step 2-step 3-step 4-step  
 GLO 0.0240  
 PCEE 0.0436 0.0240 0.0240 0.0240 
 PCESE 0.1002 0.0439 0.0347 0.0276 

Table 4
MSEs of different estimators with varying pilot sample sizes.
 Estimator Pilot percentage
 1% 5% 10% 20%  
 GLO 0.0031  
 PCEE 0.0181 0.0032 0.0031 0.0031 
 PCESE 0.0731 0.0039 0.0034 0.0032 

the proposed methods with FedAvg using two metrics: (a) MSE, (b) the number of communication rounds. The total sample size 
is fixed at 𝑁 = 5 × 104, while the number of local machines 𝐾 varies from 5 to 50. Table  5 presents the results for all methods. 
The proposed methods achieve the best estimation accuracy with two communication rounds. In contrast, FedAvg employs local 
stochastic gradient descent (SGD) with centralized model averaging. As a first-order method, it converges more slowly than our 
second-order approaches, requiring more communication rounds.
10 
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Fig. 3. The logarithm of the MSE for all estimators in mis-specified models varies with the full sample size 𝑁 , with the number of worker 𝐾 is fixed at 𝐾 = 10. 
In all cases, each point represents the average of 500 replications. n all cases, each point corresponds to the average of 500 replications. In Case I, the whole 
data is split randomly. The Case II, the data is heterogeneous. The data allocation mechanism in Case III depends solely on predictors 𝑋, while in Case IV, it 
depends on both predictors 𝑋 and the response 𝑌 .

Table 5
The results of comparison between different methods.
 Estimator 𝐾 Communication 
 5 10 20 50 round  
 GLO 0.0006 0  
 FedAvg 0.0012 0.0019 0.0023 0.0026 100  
 PCEE 0.0006 0.0006 0.0006 0.0006 2  
 PCESE 0.0006 0.0006 0.0006 0.0006 2  

5. Real data examples

5.1. U.S. Airline dataset

We apply the PCEE and PCESE methods to the U.S. Airline Dataset (http://stat-computing.org/dataexpo/2009) to check their 
practical performances. Detailed flight information about American Airlines in 2008 is used. It is a large-scale dataset with 238,9217 
observations. The response variable ‘‘Delayed’’ is a binary indicator, which is defined as a flight being fifteen minutes or more later 
than its scheduled departure time. Following Wang et al. (2021), we take four covariates as the regressors, including the distance 
of the flight, departure time, departure day of the week, and departure month. The complete variable details are described in Table 
6.
11 
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Table 6
Description of the response variable and covariates utilized in the U.S. Airlines dataset.
 Variable Description  
 Response Delayed Dummy variable used to indicate  
 whether the flight is delayed or not.  
 Predictors Distance Distance between airport and destination airport 
 Departure time Categorical variables with 4 levels  
 Departure day of week Categorical variables with 7 levels  
 Departure month Categorical variables with 4 levels  

Table 7
Classification error rates of the different estimators.
 K 2 50 100  
 PCEE 0.252 0.257 0.258 
 PCESE 0.252 0.295 0.327 
 AVG 0.252 0.519 0.523 
 CSL 0.252 – –  
 DOS 0.280 – –  
 DLSA 0.303 0.322 0.526 
 OSUP 0.252 0.252 0.252 
 GLO 0.252 0.252 0.252 
Note: The notation ‘‘–’’ indicates the method fails to compute the outcome.

Fig. 4. The mean of distance across local data.

The goal is to predict whether a flight is delayed or not using a logistic regression model. To accomplish this, we start by removing 
observations associated with canceled flights, reducing the dataset’s sample size to 2,319,121. The total sample size of the training 
set and test set are respectively 200,0000 and 319,121. We train the model on the training set and evaluate the classification error 
on the test set. We split the training data set into 𝐾 subsets according to the same way as in the Case IV in Section 4, where the 
𝐾 ranges from 2 to 100. To investigate the heterogeneity across different local data files, we use the covariate ‘‘Distance’’ as an 
example and illustrate the trends of sample means in each data file in Fig.  4 It is evident that the mean values of the covariate 
‘‘Distance’’ vary significantly across data files, indicating the non-randomness of data distribution among the files.

Next, we apply our methods for logistic regression model to the non-randomly distributed datasets. The classification error of the 
proposed methods and the other competing 6 estimators is compared. Table  7 exhibits the classification error of different methods. 
The pilot bootstrap sample proportion is set as 0.1%. When 𝐾 is extremely small (𝐾 = 2), all methods behave similarly. As 𝐾
increases, the CSL and DOS methods developed for randomly distributed data fail, while the classification error rates of the our 
estimators are lower than those of the AVG and DLSA estimators and close to those of the OSUP and GLO estimators. However, our 
methods adopt the bootstrap pilot sample, avoiding the transfer of raw data in the OSUP estimator.

5.2. Census Income Dataset

In this section, we demonstrate the application of our proposed methods using the Census Income Dataset (Kohavi et al., 1996), a 
widely recognized benchmark dataset extracted from the 1994 U.S. Census database. The dataset contains 48,842 observations with 
a binary response variable indicating whether an individual’s annual income exceeds $50,000. We define individuals exceeding this 
12 
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Fig. 5.  The sample sizes (a) and high-income cohort proportions (b) across data partitions. Significant disparities in both sample sizes and high-income cohort 
proportions emphasize the dataset’s heterogeneous nature.

Table 8
Estimation results for the logistic regression under the GLO, PCEE, and PCESE methods. In each method, we report the estimated coefficients (Estimate), standard 
error (SE), and p-values for all the variables.
 GLO PCEE PCESE

 Estimate SE p-Value Estimate SE p-Value Estimate SE p-Value 
 Intercept −1.3271 0.0150 0.0000 −1.3100 0.0148 0.0000 −1.3105 0.0148 0.0000  
 𝜃1 0.5851 0.0145 0.0000 0.5723 0.0144 0.0000 0.5690 0.0144 0.0000  
 𝜃2 0.0414 0.0140 0.0030 0.0396 0.0139 0.0044 0.0355 0.0139 0.0107  
 𝜃3 0.2612 0.0122 0.0000 0.2569 0.0121 0.0000 0.2640 0.0121 0.0000  
 𝜃4 0.5837 0.0151 0.0000 0.5642 0.0149 0.0000 0.5554 0.0149 0.0000  

threshold as the high-income cohort. We select for variables as the covarites: Age (𝑥1), Fnlwgt (𝑥2), LosCap (𝑥3) and hours worked 
per week (𝑥4). The variable Fnlwgt is the number of people the observation represents and LosCap is capital loss quantifies financial 
losses from investment activities.

The dataset, obtained from the UCI Machine Learning Repository (Lichman, 2013), has been pre-partitioned into a training set 
(32,561 observations) and a validation set (16,281 observations). We segmented the entire training set into 𝐾 = 16 distinct subsets 
according to educational attainment levels. Fig.  5 illustrates the characteristics of the dataset, revealing substantial heterogeneity 
in both sample sizes and proportions of high-income cohorts between data partitions.

Next, we construct a logistic regression model to identify the variables that help predict individuals’ income status. Table  8 gives 
the estimation results of the GLO, PCEE, and PCESE estimators, including the estimated coefficients, standard errors (SE), and the 
p-values. All methods exhibit similar regression result. Notably, the PCESE estimator exhibits reduced statistical power for detecting 
the Final Weight effect. This is because larger samples typically improve detection power for non-zero effects.

Table  9 presents a comprehensive comparison of classification errors and computation times across methods. The empirical 
findings show that our proposed estimators, the PCEE and PCESE, attain classification accuracy levels that are comparable to those 
achieved by the GLO and the OSUP estimators. In terms of computational efficiency, the PCEE and PCESE exhibit a substantial 
reduction in computation time compared to the GLO estimator. This efficiency improvement is primarily attributed to the distributed 
inference framework employed by our proposed methods, which allows for parallel processing and reduces the computational 
burden on any single node. However, when compared to the OSUP estimator, the PCEE and PCESE exhibit a moderate increase 
in computation time. This increase is largely due to the additional computational overhead associated with generating bootstrap 
pilot samples on the central server, a necessary step in our methodologies to ensure robustness and accuracy. It is important to 
note, however, that the OSUP approach necessitates the transmission of the Hessian matrix and partial real data from each local 
node to the master node. This transmission not only introduces additional communication overhead but may also raise privacy-
preserving concerns, as sensitive data or model parameters could potentially be exposed during the transfer. In summary, while the 
PCEE and PCESE estimators offer a balance between classification accuracy and computational efficiency, their performance relative 
to OSUP highlights the trade-offs involved in choosing between different methodologies, particularly with respect to privacy and 
computational overhead.

Furthermore, while the DLSA estimator performs adequately in the specific context of this study, it, along with the CSL and the 
DOS estimators, exhibits inconsistent performance across a wide range of non-random data distribution scenarios, as detailed in 
Section 5.1. This inconsistency underscores the importance of carefully considering the underlying data distribution characteristics 
when selecting an appropriate estimator for a given application.
13 
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Table 9
Classification error and computation time (in seconds) of various estimators.
 Estimator GLO OSUP CSL DOS DLSA PCEE PCESE  
 Error 0.2381 0.2381 0.7634 0.7638 0.2343 0.2384 0.2379 
 Time 0.4420 0.0178 0.0179 0.0200 0.0110 0.0613 0.0609 

6. Conclusion

In this study, we address the statistical estimation problem for non-randomly distributed data. To tackle the challenges posed by 
non-randomness, we propose two distributed estimators: the PCEE and the PCESE. These methods are designed to accommodate the 
nature of non-randomly distributed data, requiring only two rounds of communication between the workers and the Master. In the 
first round, each worker computes its local MLE and broadcasts it to the Master. The Master then generates a pilot bootstrap sample 
using a parametric bootstrap procedure and computes the KL estimator. In the second round, we perform one-step update on the 
KL estimator using the derivative information collected from all workers. We adopt two update strategies-Newton–Raphson one-
step update and a surrogate likelihood function- and obtain two distinct estimators, PCEE and PCESE, respectively. Theoretical and 
simulation results confirm that our proposed estimators share the same asymptotic distribution as the global estimator, underscoring 
their validity and effectiveness.

Our investigation has also revealed several promising research directions. First, we assume that the local density functions 
𝑝𝑘

(

𝑌 |𝑋,𝑊𝑘; 𝛽𝑘
) is known with the parameter vector 𝛽𝑘 being unknown. If the density is unkown, it can be estimated using non-

parametric methods such as kernel density estimation to mitigate model mis-specification risks. Second, while KL divergence was 
employed in this work, alternative distance metrics such as the Wasserstein distance may offer advantages in more complex models, 
such as linear mixed-effect models (Srivastava and Xu, 2021). Thirdly, our methods do not fully address network quality issues, such 
as delays, packet loss, and bandwidth limitations, which are critical in real-world deployments with potentially unstable distributed 
networks. Lastly, despite reducing the risk of individual information leakage, our methods remain vulnerable to reconstruction 
attacks, highlighting the need for integrating rigorous privacy-preserving techniques, such as differential privacy, into distributed 
statistical inference frameworks. We plan to explore these avenues in our future research endeavors.
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Appendix A. Proof of main results

Let 𝛿𝜌 = min{𝜌, 𝜌𝜆−4𝑀 }. We first define some ‘‘good events’’:

0 ∶=
{

‖𝜃 − 𝜃∗‖2 ≤ min
{

𝜌𝜆−
8𝑀

,
(1 − 𝜌)𝜆−𝛿𝜌

8𝜆+

}}

, 1 =

{

1
𝑛
∑

𝑖∈𝑘

𝑀(𝑍𝑖) ≤ 2𝑀

}

,

2 =
{

‖∇2𝐿(𝜃∗) − 𝐼(𝜃∗)‖2 ≤
𝜌𝜆−
2

}

, 3 =
{

‖∇2𝐿(𝜃∗) − 𝐼(𝜃∗)‖2 ≤
𝜌𝜆−
2

}

,

4 =
{

‖∇𝐿(𝜃∗)‖2 ≤
(1 − 𝜌)𝜆−𝛿𝜌

2

}

.

Lemma 1.  Let  = 0 ∩ 1 ∩ 2 ∩ 3 ∩ 4. Under the Assumptions  1–5, it has

P(𝑐 ) ≤
(

𝑐1 + 𝑐2 (log 2𝑑)
8 𝐻8 + 𝑐3 𝐺

8) 𝐾
𝑛40

,

where 𝑐1, 𝑐2, 𝑐3 are constants independent of (𝑁,𝐾, 𝑛0).

Then, we establish the upper bound of the error 𝜃̂𝑃𝐶𝐸𝑆𝐸 − 𝜃.

Lemma 2.  Under event  and Assumptions  1–5, it has 

‖𝜃̂𝑃𝐶𝐸𝑆𝐸 − 𝜃‖2 ≤
2‖∇𝐿̃(𝜃)‖2
(1 − 𝜌)𝜆−

. (9)

Lemma 3.  Under Assumptions  1–5, it has 𝜃̂ − 𝜃∗ = 𝑂 (𝑛−1∕2).
𝐾𝐿 𝑃 0
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A.1. Proof of Theorem  1

Proof. 
By the definition of the PCEE estimator, one has

𝜃̂𝑃𝐶𝐸𝐸 − 𝜃∗ = 𝜃̂𝐾𝐿 − 𝜃∗ −
(

∇2𝐿(𝜃̂𝐾𝐿)
)−1 ∇𝐿(𝜃̂𝐾𝐿),

the standardized estimator ∇2𝐿(𝜃̂𝐾𝐿)(𝜃̂𝑃𝐶𝐸𝐸 − 𝜃∗) is equal to
∇2𝐿(𝜃̂𝐾𝐿)(𝜃̂𝐾𝐿 − 𝜃∗) −

(

∇𝐿(𝜃̂𝐾𝐿) − ∇𝐿(𝜃∗)
)

− ∇𝐿(𝜃∗).

By Taylor expansion, the second term can be replaced by

∫

1

0
∇2𝐿((1 − 𝜅1)𝜃∗ + 𝜅1𝜃̂𝐾𝐿)𝑑𝜅1 (𝜃̂𝐾𝐿 − 𝜃∗).

Thus, it holds that
∇2𝐿(𝜃̂𝐾𝐿)(𝜃̂𝐾𝐿 − 𝜃∗) −

(

∇𝐿(𝜃̂𝐾𝐿) − ∇𝐿(𝜃∗)
)

− ∇𝐿(𝜃∗)

=

(

∇2𝐿(𝜃̂𝐾𝐿) − ∫

1

0
∇2𝐿((1 − 𝜅1)𝜃∗ + 𝜅1𝜃̂𝐾𝐿)𝑑𝜅1

)

(

𝜃̂𝐾𝐿 − 𝜃∗
)

− ∇𝐿(𝜃∗).

By Assumption  3, one has
‖

‖

‖

‖

‖

∇2𝐿(𝜃̂𝐾𝐿) − ∫

1

0
∇2𝐿((1 − 𝜅1)𝜃∗ + 𝜅1𝜃̂𝐾𝐿)𝑑𝜅1

‖

‖

‖

‖

‖2
≤ 𝑀‖𝜃̂𝐾𝐿 − 𝜃∗‖2.

Let 𝑢𝑛 =
(

∇2𝐿(𝜃̂𝐾𝐿)
)−1(∇2𝐿(𝜃̂𝐾𝐿)−∫ 1

0 ∇2𝐿((1 − 𝜅1)𝜃∗+𝜅1𝜃̂𝐾𝐿)𝑑𝜅1
)

(𝜃̂𝐾𝐿−𝜃∗). By Lemma B.3 and the Continuous mapping Theorem, 
we have

‖𝑢𝑛‖2 = 𝑂𝑃 (‖𝜃̂𝐾𝐿 − 𝜃∗‖22) = 𝑂𝑃 (𝑛−10 ).

Hence, the first part of Theorem  1 is proven. Then, it holds that
√

𝑁(𝜃̂𝑃𝐶𝐸𝐸 − 𝜃∗) = −∇2𝐿(𝜃̂𝐾𝐿)−1
1

√

𝑁

𝐾
∑

𝑘=1

∑

𝑖∈𝑘

∇𝑙(𝑍𝑘𝑖, 𝜃
∗) + 𝑂𝑃 (

√

𝑁 ∗ 𝑢𝑛)

= −∇2𝐿(𝜃̂𝐾𝐿)−1
1

√

𝑁

𝐾
∑

𝑘=1

∑

𝑖∈𝑘

∇𝑙(𝑍𝑘𝑖, 𝜃
∗) + 𝑂𝑃

(
√

𝑁
𝑛0

)

.

Applying the Law of Large Numbers and the Continuous mapping Theorem, one has

∇2𝐿(𝜃̂𝐾𝐿)
𝑃

⟶ 𝐼(𝜃∗).

By the Central Limit Theorem, we obtain

1
√

𝑁

𝐾
∑

𝑘=1

∑

𝑖∈𝑘

∇𝑙(𝑍𝑖, 𝜃
∗)

𝑃
⟶  (0, E[∇𝑙(𝑍; 𝜃∗)∇𝑙(𝑍; 𝜃∗)𝑇 ]).

By the condition that 
√

𝑛0
𝑁 ⟶ ∞, combining the above results yields the claimed asymptotic distribution of 

√

𝑁(𝜃̂𝑃𝐶𝐸𝐸 − 𝜃∗).

A.2. Proof of Theorem  2

To prove Theorem  2, it suffices to bound the ‖∇𝐿̃(𝜃)‖2. A simple algebraic operation yields that 
∇𝐿̃(𝜃) = ∇𝐿(𝜃) − ∇𝐿(𝜃̂𝐾𝐿) − (∇𝐿(𝜃) − ∇𝐿(𝜃̂𝐾𝐿)), (10)

where we use the fact that ∇𝐿(𝜃) = 0. Denote 𝐻 = ∫ 1
0 ∇2𝐿(𝜃̂𝐾𝐿 + 𝜅2(𝜃 − 𝜃̂𝐾𝐿)) 𝑑𝜅2, 𝐻𝑁 = ∫ 1

0 ∇2𝐿(𝜃̂𝐾𝐿 + 𝜅3(𝜃 − 𝜃̂𝐾𝐿)) 𝑑𝜅3. By 
Taylor expansion, one has

∇𝐿̃(𝜃) =𝐻(𝜃− 𝜃̂𝐾𝐿)−𝐻𝑁 (𝜃− 𝜃̂𝐾𝐿)

=
(

𝐻−∇2𝐿(𝜃∗)− (𝐻𝑁 −∇2𝐿(𝜃∗))+∇2𝐿(𝜃∗)−∇2𝐿(𝜃∗)
)

(𝜃− 𝜃̂𝐾𝐿).

By the Cauchy–Schwarz inequality, it holds that
‖∇𝐿̃(𝜃)‖2 ≤ ‖𝐻1 − ∇2𝐿

(

𝜃∗
)

‖2‖𝜃 − 𝜃̂𝐾𝐿‖2 + ‖𝐻𝑁 − ∇2𝐿
(

𝜃∗
)

‖2‖𝜃 − 𝜃̂𝐾𝐿‖2

+ ‖∇2𝐿
(

𝜃∗
)

− ∇2𝐿
(

𝜃∗
)

‖2‖𝜃 − 𝜃̂𝐾𝐿‖2

≤
(

2𝑀‖𝜃 − 𝜃̂𝐾𝐿‖2 + 2𝑀‖𝜃 − 𝜃∗‖2 + ‖∇2𝐿
(

𝜃∗
)

− ∇2𝐿
(

𝜃∗
)

‖2

)

⋅ ‖𝜃 − 𝜃̂𝐾𝐿‖2.

The Theorem  2 follows by combining the preceding results.
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A.3. Proof of Theorem  3

Proof.  Recall that 𝜃 is the minimizer of 𝐿(𝜃), one has
0 = ∇𝐿(𝜃) = ∇𝐿(𝜃∗) +𝐻 ′

𝑁 (𝜃 − 𝜃∗),

where 𝐻 ′
𝑁 = ∫ 1

0 ∇2𝐿(𝜃 + 𝜅4(𝜃 − 𝜃∗)) 𝑑𝜅4. By linear algebra, it holds that
𝜃 − 𝜃∗ =−𝐼(𝜃∗)−1∇𝐿(𝜃∗)−

(

𝐻 ′
𝑁 − ∇𝐿(𝜃∗)

)

(𝜃 − 𝜃∗) −
(

∇2𝐿(𝜃∗) − ∇𝐿(𝜃∗)
)

(𝜃 − 𝜃∗).

Thus, by Assumption  4 and Lemma  B.1, the last two terms are proved to be 𝑂𝑃 (1∕𝑁).
Furthermore, we decompose the error 𝜃̂𝑃𝐶𝐸𝑆𝐸 − 𝜃∗ into two parts:

𝜃̂𝑃𝐶𝐸𝑆𝐸 − 𝜃∗ = 𝜃̂𝑃𝐶𝐸𝑆𝐸 − 𝜃 + 𝜃 − 𝜃∗.

Combining Theorem  2 and Slutsky’s theorem, Theorem  3 can be proved.

Appendix B. Proof of the auxiliary lemmas

We first introduce two important lemmas in Zhang et al. (2012) and a theorem in Han and Liu (2016). 

Lemma B.1 (Zhang et al., 2012). Under the events ∩4
𝑖=1𝑖, we have 

‖𝜃̂1 − 𝜃∗‖2 ≤
2‖∇𝐹1(𝜃∗)‖2
(1 − 𝜌)𝜆−

. (11)

Lemma B.2 (Zhang et al., 2012). Suppose Assumptions  1–5 holds, there exist constants 𝑐1, 𝑐2 and 𝑐3 such that for constant 𝑞,

E
[

‖

‖

‖

∇𝐿
(

𝜃∗
)

‖

‖

‖

𝑞

2

]

≤ 𝑐1
𝐺𝑞

𝑛𝑞∕20

,

E
[

‖

‖

‖

∇2𝐿(𝜃∗) − 𝐼(𝜃∗)‖‖
‖

𝑞

2

]

≤ 𝑐2
log𝑞∕2(2𝑑)𝐻𝑞

𝑛𝑞∕20

,

E
[

‖

‖

‖

∇2𝐿(𝜃∗) − 𝐼(𝜃∗)‖‖
‖

𝑞

2

]

≤ 𝑐3
log𝑞∕2(2𝑑)𝐻𝑞

𝑁𝑞∕2
.

B.1. Proof of Lemma  1

Proof.  Recall that  = 0 ∩ 1 ∩ 2 ∩ 3 ∩ 4.
Let 𝐶 ′ = min

{

𝜌𝜆−
8𝑀 ,

(1−𝜌)𝜆−𝛿𝜌
8𝜆+

}

. For 0, by Lemmas  B.1, B.2, and Markov’s inequality, we obtain that

P(‖𝜃 − 𝜃∗‖82 > 𝐶 ′) ≤
E‖𝜃 − 𝜃∗‖82

𝐶 ′ ≤
2E‖∇𝐿(𝜃∗)‖82
𝐶 ′(1 − 𝜌)𝜆−

≤
2𝐶0𝐺8

𝐶 ′(1 − 𝜌)𝜆−𝑁4
.

Likewise, we have

P(𝑐
1 ) ≤

E
[

|

|

|

|

1
𝑛0

∑𝑛0
𝑖=1 𝑀(𝑧𝑖) − E[𝑀(𝑧)]

|

|

|

|

8]

𝑀8
≤ 𝐶1

1
𝑛40

,

P(𝑐
2 ) ≤

28E
[

‖

‖

‖

∇2𝐿(𝜃∗) − 𝐼(𝜃∗)‖‖
‖

8

2

]

𝜌8𝜆8−
≤ 𝐶2

log4(2𝑑)𝐻8

𝑛40
,

P(𝑐
3 ) ≤

28E
[

‖

‖

‖

∇2𝐿(𝜃∗) − 𝐼(𝜃∗)‖‖
‖

8

2

]

𝜌8𝜆8−
≤ 𝐶3

log4(2𝑑)𝐻8

𝑁4
,

P(𝑐
4 ) ≤

28E
[

‖

‖

∇𝐿(𝜃∗)‖
‖

8
2

]

(1 − 𝜌)8𝜆8−𝛿8𝜌
≤ 𝐶4

𝐺8

𝑛40
.

Applying the union bound yields that
P(𝑐 ) = P(𝑐

0 ∪ 𝑐
1 ∪ 𝑐

2 ∪ 𝑐
3 ∪ 𝑐

4 ) ≤ P(𝑐
0 ) + P(𝑐

1 ) + P(𝑐
2 ) + P(𝑐

3 ) + P(𝑐
4 )

≤ 𝐶0
𝐺8

𝑁4
+ 𝐶1

1
𝑛40

+ 𝐶2
log4(2𝑑)𝐻8

𝑛40
+ 𝐶3

log4(2𝑑)𝐻8

𝑁4
+ 𝐶4

𝐺8

𝑛40

≤
(

𝑐1 + 𝑐2 (log 2𝑑)
8 𝐻8 + 𝑐3 𝐺

8) 𝐾
𝑛40

where constants 𝐶 , 𝑖 = 1,… , 4, and 𝑐 , 𝑗 = 1, 2, 3, are independent of (𝐾, 𝑛 ,𝑁).
𝑖 𝑗 0
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B.2. Proof of Lemma  2

Proof.  Inequality (9) of Lemma  2 follows directly from the application of Lemma  B.1. By substituting 𝜃̂1, 𝜃∗ and 𝐹1 with 𝜃̂𝑃𝐶𝐸𝑆𝐸 , 
𝜃, and 𝐿̃, respectively, one has

‖𝜃̂𝑃𝐶𝐸𝑆𝐸 − 𝜃‖2 ≤
2‖∇𝐿̃(𝜃)‖2
(1 − 𝜌)𝜆−

.

Hence, in order to apply their result, it suffices to verify the conditions on the first and the second-order derivatives. Specifically, 
under the event  , it holds that

‖∇2𝐿̃(𝜃) − 𝐼(𝜃∗)‖2 ≤
𝜌𝜆−
2

, and ‖∇𝐿̃(𝜃)‖ ≤
(1 − 𝜌)𝜆−𝛿𝜌

2
.

Notice that the Hessian matrix of ∇2𝐿̃(𝜃) = ∇2𝐿(𝜃). Under the events 1 and 2, one has

‖∇2𝐿(𝜃) − 𝐼(𝜃∗)‖2 ≤ 2𝑀 ‖𝜃 − 𝜃∗‖2 + ‖∇2𝐿(𝜃∗) − 𝐼(𝜃∗)‖2 ≤
𝜌𝜇−
4

+
𝜌𝜇−
4

=
𝜌𝜇−
2

.

To bound the gradient term, we apply the Taylor expansion to obtain that

∇𝐿(𝜃) − ∇𝐿(𝜃∗) = 𝐻 ′
(𝜃 − 𝜃∗),

where 𝐻 ′
 = ∫ 1

0 ∇2𝐿(𝜃 + 𝜅5(𝜃∗ − 𝜃))𝑑𝜅5. Under the event  , applying the Cauchy–Schwartz inequality and the triangle inequality 
yields that

‖∇𝐿(𝜃)‖2 ≤ ‖∇𝐿(𝜃∗)‖2 + ‖𝐻 ′
 − 𝐼(𝜃∗)‖2‖𝜃 − 𝜃∗‖2 + ‖𝐼(𝜃∗)‖2 ‖𝜃 − 𝜃∗‖2

≤
(1 − 𝜌)𝜆−𝛿𝜌

4
+ 2𝑀‖𝜃 − 𝜃∗‖22 + 𝜆+‖𝜃 − 𝜃∗‖2

≤
(1 − 𝜌)𝜆−𝛿𝜌

2
.

B.3. Proof of Lemma  3

Proof.  By the definition of 𝜃∗ and 𝜃∗𝐾𝐿, it can be shown that

𝜃∗ = argmin
𝜃∈𝛩

E[𝓁(𝑍; 𝜃)],

𝜃∗𝐾𝐿 = argmin
𝜃∈𝛩

E[𝓁(𝑍̃; 𝜃)].

Next, it can be proved that 𝛥1 = E[𝓁(𝑍; 𝜃)] − E[𝓁(𝑍̃; 𝜃)] = 𝑜𝑃 (1).

𝛥1 = E[𝓁(𝑍; 𝜃)] − E[𝓁(𝑍̃; 𝜃)]

= ∫ 𝑝(𝑌 |𝑋; 𝜃) log 𝑝(𝑌 |𝑋; 𝜃)𝑑𝑌 − ∫ 𝑝0(𝑌 |𝑋) log 𝑝(𝑌 |𝑋; 𝜃)𝑑𝑌 ,

= ∫
(

𝑝(𝑌 |𝑋; 𝜃) − 𝑝0(𝑌 |𝑋)
)

log 𝑝(𝑌 |𝑋; 𝜃)𝑑𝑌 ,

It suffices to bound the term 𝑝(𝑌 |𝑋; 𝜃) − 𝑝0(𝑌 |𝑋).

𝛥2 = 𝑝(𝑌 |𝑋; 𝜃) − 𝑝0(𝑌 |𝑋)

=
𝐾
∑

𝑘=1
∫

(

𝑝𝑘(𝑌 |𝑋,𝑊𝑘; 𝛽𝑘) − 𝑝𝑘(𝑌 |𝑋,𝑊𝑘; 𝛽𝑘)
)

𝑓𝑘(𝑊𝑘|𝑋)𝑑𝑊𝑘

≤
𝐾
∑

𝑘=1
𝑐𝑘‖𝛽𝑘 − 𝛽𝑘‖2.

The last inequality holds because, under Assumptions  1–5, we have that |𝑝𝑘(𝑌 |𝑋,𝑊𝑘; 𝛽𝑘) − 𝑝𝑘(𝑌 |𝑋,𝑊𝑘; 𝛽𝑘)| ≤ 𝑐𝑘‖𝛽𝑘 − 𝛽𝑘‖2 for some 
constants 𝑐𝑘. By Theorem 5.7 in Van der Vaart (2000), we obtain that 𝛥2 = 𝑂𝑃 (𝑛

−1∕2
𝑘 ) = 𝑜𝑃 (1). Given that 𝐾 is a fixed integer, we 

know that 𝛥1 = 𝑜𝑃 (1). Furthermore, the Law of Large Numbers guarantees that 1
𝑛0

∑

𝑖∈ 𝑙(𝑍̃𝑖; 𝜃) − E[𝓁(𝑍̃; 𝜃)] = 𝑜𝑃 (1). Synthesizing 
these results yields that

𝐿(𝜃) − E[𝓁(𝑍; 𝜃)] = 𝑜𝑃 (1).

Reapplying Theorem 5.7 in Van der Vaart (2000) ultimately establishes that 𝜃̂𝐾𝐿 − 𝜃∗ = 𝑂𝑃 (𝑛
−1∕2
0 ).
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