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Abstract
In many fields, limited or censored data are often collected due to limitations of
measurement equipment or experimental design. Commonly used censored linear
regression models rely on the assumption of normality for the error terms. However,
this approach has faced criticism in literature due to its sensitivity to deviations from
the normality assumption. In this paper, we propose an extension of the CR model
under the two-piece generalized t (TPGT)-error distribution, called TPGT-CR model.
The TPGT-CR model offers greater flexibility in modeling data by accommodating
skewness and heavy tails. We developed a modified maximum likelihood (MML) esti-
mator for the proposed model and introduced the modified deviance residual to detect
outliers. The developedMMLestimator under the TPGT assumption possesses several
appealing merits, including robustness against outliers, asymptotic equivalence to the
maximum likelihood estimator, and explicit functions of sample observations. Sim-
ulation studies are conducted to examine the finite sample performance, robustness,
and effectiveness of both the classical and proposed estimators. The results from both
the simulated and real data illustrate the usefulness of the proposed method.
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1 Introduction

In many practical situations, some subjects may be recorded only if the values fall
within an interval range, so the responses are often subject to censoring. For example,
in astronomical data, censoring can occur due to nondetections. Censored regression
model has been widely used for analyzing censored data in the theoretical and applied
econometric field [see Khan and Tamer (2009), Chen and Khan (2000), Khan and
Powell (2001)].

The classical parametric estimators of this model rely on the assumption that the
error terms follow a known parametric distribution. It is well-known that the Tobit
estimator based on normally distributed errors is inefficient for non-normal error terms.
In addition, the Tobit estimates has certain limitations when there are a few extreme
observations in the data and look way off in some cases. To address these limitations
and allow for valid analysis of censored data, various alternative estimation procedures
have been developed for the CR model, which can be categorized into two types.

The first type is distribution-free method, which does not assume any specific error
distribution. Examples of this type include censored least absolute deviations (CLAD)
estimator proposed by Powell (1984), symmetrically censored least squares (SCLS)
proposed by Powell (1986), and two-step estimators proposed by Khan and Powell
(2001).The second type aims to identify a specificdistribution for the censoreddata and
then estimate the model parameters. In an earlier study, Amemiya (1985) introduced
a bivariate sample selection model, extending the Tobit model with a censoring latent
variable distinct from the outcome-generating latent variable (see also chapter 16 in
Cameron and Trivedi (2005)). Arellano-Valle et al. (2012) introduced the T-CRmodel,
where the error terms are independently distributed with a t distribution. Lewis and
McDonald (2014) proposed partially adaptive estimators (PAE) for the CR model by
considering two families of distributions, i.e., the exponential generalized beta of the
second kind and the generalized t (GT) distributions. Garay et al. (2017) proposed a
robust CR model where the errors are assumed to follow a scale mixture of normal
(SMN) distribution. In the context of SMN censored regression model, Garay et al.
(2015) introduced another robust parametric approach from a Bayesian perspective.
More recently, Zeller et al. (2019) developed an efficient EM-type algorithm for the
extension of the finite mixture Tobit model by assuming that the error terms follow
a distribution from the SMN class independently. Massuia et al. (2017) provided a
Bayesian framework for CRmodels by considering the scale mixtures of skew-normal
(SMSN) class of distributions.

The vast majority of the mentioned works either requires computationally intensive
numerical techniques, or is too complex for practitioners to implement. Additionally,
some proposals are not suitable for modeling highly skewed data with censoring and
heavy tails, which is common among actuarial, financial, social, epidemiological, and
medical studies (Carrasco et al. 2008; Wang et al. 2016; Guzmán et al. 2021). For
such complex censored data structure, traditional Tobit model may lead to biased and
inconsistent estimation results. Thus, there is a need to seek an appropriate theoretical
model and develop effective inference techniques that can provide valid analysis.
Lian et al. (2024) proposed the TPGT distribution, which is inspired by the two-piece
distribution family. Two-piece distributions are a two-componentmixtures of truncated
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densities, allowing for flexible fitting to various types of data. As Arellano-Valle et al.
(2005),Mudholkar andHutson (2000), Arellano-Valle et al. (2020), all of these studies
are based on this distribution family.

In this context, we propose a CRmodel for censored data structure where the obser-
vational errors have a two-piece generalized t distribution, called TPGT-CR model.
First, our TPGT-CR model assumes a data distribution called TPGT, while the cen-
soring thresholds and mechanisms of the model are determined by the data. This
distributional assumption enhances flexibility in modeling data by accommodating
skewness and heavy tails. The TPGT-CR model is capable of capturing more features
of the data, offering higher interpretability, and modeling capabilities for left/right-
censored data, thus making it applicable to a wider range of domains. Based on the
proposed TPGT-CR model, we use the modified maximum likelihood method to esti-
mate the parameters [see Balci et al. (2013), Yalçınkaya et al. (2018)]. The MML
estimators have several appealing merits: (i) They have explicit forms to facilitate cal-
culation; (ii) The MML estimators are asymptotic equivalence to ML estimators [see
also Bhattacharyya (1985), Vaughan and Tiku (2000), Tiku and Suresh (1992) and
Sect. 4 of Yalçınkaya et al. (2018)]. This ensures that both MML estimators and ML
estimators have the same asymptotic properties necessary for hypothesis testing, such
as the consistency and asymptotic normality. Besides, simulation studies indicate that
the developed MML estimators under the TPGT assumption are robust to the pres-
ence of outliers. We demonstrate that they are more efficient (unbiased and smaller
variance) than some existing estimators for small samples, especially for non-normal
error distribution. Additionally, we consider residual analysis for the TPGT-CRmodel
based on the modified deviance residual to assess model fit and/or identify outliers in
the data.

The structure of the paper is as follows. Section2 brieflyoutlines somebasic features
of the TPGT distribution. In Sect. 3, we propose a linear regression model based on
the two-piece generalized t distribution for censored data and provide a modified
maximum likelihood method to estimate the TPGT-CR model. The fisher information
matrix are derived to obtain the standard errors of the MML estimates. In Sect. 4, we
introduce two types of residuals to check the model assumptions and the presence of
outliers. In Sect. 5, we provide various simulation studies to examine the performance
of our proposed MML method. In Sect. 6, a real data set is analyzed to illustrate the
proposed methodology. Finally, some concluding remarks are given in the last section.

2 Preliminaries

In this section, some basic definitions, theorems and properties of the TPGT distri-
bution are outlined. The TPGT distribution introduced by Lian et al. (2024) has the
following probability density function (pdf)

fT PGT (x;μ, σ, r , a, b)

= b

2σ(2a)1/bB(a, 1/b)

{
1 + |x − μ|b

2aσ b[1 + rsign(x − μ)]b
}−(a+1/b)

, (1)
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where x ∈ R, B(·, ·) denotes the beta function, μ ∈ R, σ > 0 and |r | < 1 determine
the location, scale and the skewness, respectively, and a, b > 0 control the shape of
the density function. A random variable X with pdf as in formula (1) will be denoted
by X ∼ T PGT (μ, σ, r , a, b).

The TPGT density (1) is continuous and unimodal with a mode atμ. It is positively
(negatively) skewed for r > 0 (< 0). Following the definition, the TPGT distribution
nests many important distributions as special cases. As a → +∞, the TPGT distri-
bution reduces to the two-piece generalized normal distribution. As a → +∞, r = 0
and b = 1, it gives Laplace(μ, 2σ) distribution. As μ = 0, σ = 1, r = 0, a = n/2
and b = 2, it gives a Student’s t distribution with n degrees of freedom. As
r → 1 and b = 1, it gives Pareto(I I )(μ, 2σa, a) distribution. As r = 0, it gives the
symmetric generalized t distribution.

By allowing a skewing factor to describe the skewness and introducing two shape
parameters to control kurtosis and tail heaviness, we can potentially capture more
subtle features of the distribution compared to the one proposed by Azzalini and
Capitanio (2003). This enhances our ability to describe tail phenomena and improves
predictions of quantities like Expected Shortfall which rely on the shape of the tail.
The TPGT distribution provides a powerful tool to model data having both heavy tails
and high kurtosis due to its flexibility.

The stochastic representation of X ∼ T PGT (μ, σ, r , a, b), as introduced in Lian
et al. (2024), is given by

X
d= μ + σ21/bWY 1/bZ1/b, (2)

where W , Y and Z are independent random variables. W is a discrete vari-
able assuming two states with the following probability function fW (w|r) =
(r+1)
2 I{w = r + 1} + (1−r)

2 I{w = r − 1}, Y ∼ Ga(1/b, 1) and Z ∼ IG(a, a).
Here, I{A} denotes the indicator function of A, Ga(α, λ) represents the gamma dis-
tribution with mean value α/λ and variance α/λ2, and IG(·, ·) denotes the inverse
gamma distribution. It should be noted that this stochastic representation is essen-
tial for generating random numbers and calculating the kth moments of the TPGT
distribution. For further details, please refer to Lian et al. (2024).

Let X0 = (X − μ)/σ , then the pdf and cumulative distribution function (cdf) of
the standard TPGT distribution are respectively given by

f0(x; r , a, b) = b

2(2a)1/bB(a, 1/b)

{
1 + |x |b

2a[1 + rsign(x)]b
}−(a+1/b)

, (3)

F0(x; r , a, b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( 1−r
2

)
I

((
1 + |x |b

2a[1+r ·sign(x)]b
)−1

; a, 1/b

)
, x ≤ 0,

1 − ( 1+r
2

)
I

((
1 + |x |b

2a[1+r ·sign(x)]b
)−1

; a, 1/b

)
, x > 0,

(4)

where I (y; a, b) = 1
B(a,b)

∫ y
0 ta−1(1− t)b−1dt denotes the incomplete beta function.
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Fig. 1 The probability density functions of the standard TPGT distribution with different values of r , a
and b

In addition for the purpose of visualization, we have also plotted the pdfs of the
standard TPGT distribution with different values of r , a and b in Fig. 1. Figure1a
illustrates that the density curve is skewed to the right for r > 0 and to the left for
r < 0. As r approaches +1 (−1), the density function becomes a right (or left) half-
density. Figure1b shows the pdfs of the standard TPGT distribution with r = 0.6,
b = 2 and varying a. As a decreases, the tails of the pdfs become heavier. Figure1c
shows the pdfs of the standard TPGT distribution with r = 0.6, a = 3 and varying
b. As b increases, the tails of the pdfs become shorter and lighter, the pdfs becomes
flatter around the center and the peaks turn to be higher. Figure1b and c show that two
shape parameters (a and b) directly regulate the tail behavior and the peakedness of
the density.

3 The TPGT-CRmodel

3.1 Themodel

In the CR model, we assume that the error terms follow a TPGT distribution rather
than the normal distribution. Consider first the uncensored scenario and the multiple
linear regression model

Yi = β0 + x�
i β + εi , εi

i id∼ TPGT (0, σ, r , a, b) , i = 1, · · · , n, (5)

where Yi is a continuous response variables for the i th subject, xi = (xi1, . . . , xip)� is
a known covariate vector, β = (β1, . . . , βp)

� denotes an unknown parameter vector
and {εi }ni=1 is a sequence of independent random errors. Let μi = β0 + x�

i β, then
Yi ∼ T PGT (μi , σ, r , a, b).

We assume that the response variable Yi is not fully observed for all subjects.
Specifically, Yi is a latent variable and the observed data (Vi , ρi ) take the form

Vi = max{Yi , ci } =
{
ci , if ρi = 1 (i.e. Yi ≤ ci )

Yi , if ρi = 0 (i.e. Yi > ci )
, i = 1, . . . , n, (6)
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where ci is the known left censoring point. The censoring indicator ρi = 1 (or
ρi = 0 ) means that the i th observation is censored (or not censored). Since the
response Yi is defined within the real numbers, extending to right-censored data
is straightforward. It’s noteworthy that if Yi ∼ T PGT (μ, σ, r , a, b), then −Yi ∼
T PGT (−μ, σ,−r , a, b). This allows us to treat right-censoring as left-censoring by
transforming Yi and ci to −Yi and −ci respectively. We call the structure defined by
(5) and (6) as the TPGT-CR model.

It is important to note that if εi are independent identically distributed TPGT with

μ = 0, r = 0, a = +∞, b = 2, (i.e., εi
i id∼ N (0, σ 2) ), and all censoring point

ci = 0, TPGT-CR model corresponds to the well-known ′′Tobit model′′ studied by
Tobin (1958). The resultingmaximum likelihood (ML) estimator is commonly referred
to as the Tobit estimator.

3.2 Maximum likelihood estimation

With the observed data (vi , ρi , xi ), the likelihood function for the parameters β0,β

and σ can be expressed as follows

ln L =
∑
yi≤ci

ln F0

(
ci − β0 − x�

i β

σ

)
+
∑
yi>ci

[
ln f0

(
yi − β0 − x�

i β

σ

)
− ln(σ )

]
,

(7)

where f0(·) and F0(·) denote the pdf and cdf of T PGT (0, 1, r , a, b), respectively.
Then, the ML estimators of the parameters of the TPGT-CRmodel can be obtained by
maximizing Eq. (7). However, due to the complexity of the log-likelihood function, it
is difficult to solve the explicit solution of the ML estimator and make some analytical
studies, especially with small sample sizes. In the next subsection, we will use the
modified maximum likelihood method to estimate the parameters of the TPGT-CR
model.

Note that the skewing factor r , the tail behavior parameter a and the shape parameter
b are first taken to be fixed, then theMMLmethodologyworks; see for example Arslan
and Genc (2009) and Acitas et al. (2021). The details of finding plausible values for
r , a and b are reported in Sect. 3.4. After taking the partial derivatives of the ln L
function in Eq. (7) with respect to β0,β and σ , we obtain the following likelihood
equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ ln L

∂β0
= − 1

σ

∑
yi≤ci

h0(zi ) + 1

σ
(a + 1

b
)
∑
yi>ci

h1(zi ) = 0,

∂ ln L

∂β
= − 1

σ

∑
yi≤ci

h0(zi )xi + 1

σ
(a + 1

b
)
∑
yi>ci

h1(zi )xi = 0,

∂ ln L

∂σ
= − 1

σ

∑
yi≤ci

h0(zi )zi + 1

σ
(a + 1

b
)
∑
yi>ci

h1(zi )zi − n − nc
σ

= 0,

(8)
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where zi = vi−β0−x�
i β

σ
, nc is the number of censored subjects and

h0(zi ) = f0(zi )

F0(zi )
, h1(zi ) = b · sign(zi )|zi |b−1

|zi |b + 2a[1 + rsign(zi )]b . (9)

The likelihood Eq. (8) involve nonlinear functions, h0(zi ) and h1(zi ), and do not
have explicit solutions. Solving them through iteration presents challenges (Chen
and Oliver 2012; Lee and Zhu 2002). The modified maximum likelihood estimation
method addresses these problems.

3.3 Modifiedmaximum likelihood estimation

We use MMLmethodology (Tiku 1967; Tiku and Suresh 1992) which alleviates com-
putational difficulties and allows to obtain the explicit forms of the ML estimators.
The steps of the MML methodology are explained as follows:

Step1. Take the rank of zi and denote it as ri for i = 1, 2, . . . , n. Use rank(·)
function in R for this purpose. Let {z(i)}ni=1 denote the order statistics obtained by
ordering {zi }ni=1, then zi = z(ri ).

Step2. Let f
′
0(ti ) = −b(ab + 1)sign(ti )|ti |b−1[u(ti )]a+ 1

b+1/{2(2a)1/b+1[1 + r ·
sign(ti )]bB(a, 1

b )} andu(ti ) =
(
1 + |ti |b

2a[1+r ·sign(ti )]b
)−1

.Linearize the nonlinear func-

tions h0(·) and h1(·) around ti = E(z(ri )) using the first two terms of Taylor series
expansion:

h0(zi ) ≈ a0i − b0i zi , i = 1, . . . , nc, h1(zi ) ≈ a1i − b1i zi , i = nc + 1, . . . , n,

(10)

where

a0i = h0(ti ) + b0i ti , b0i = − f
′
0(ti )

F0(ti )
+
[
f0(ti )

F0(ti )

]2
,

a1i = h1(ti ) + b1i ti , b1i = − b(b · u(ti ) − 1)|ti |b−2

2a[1 + r · sign(ti )]b + |ti |b .

(11)

Step 3. By incorporating the linearized versions of h0(·) and h1(·) functions into
the likelihood equations, the following modified likelihood equation can be obtained

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ ln L∗

∂β0
∝
∑
yi≤ci

(a0i − b0i zi ) − (a + 1

b
)
∑
yi>ci

(a1i − b1i zi ) = 0,

∂ ln L∗

∂β
∝
∑
yi≤ci

(a0i − b0i zi )xi − (a + 1

b
)
∑
yi>ci

(a1i − b1i zi )xi = 0,

∂ ln L∗

∂σ
∝
∑
yi≤ci

(a0i − b0i zi )zi − (a + 1

b
)
∑
yi>ci

(a1i − b1i zi )zi + (n − nc) = 0.

(12)
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Step 4. The solutions of Eq. (12) are the following MML estimators:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β̂0MML = ȳ − x̄�β̂MML − a∗

b∗ σ̂MML ,

β̂MML = K + Lσ̂MML ,

σ̂MML =
−J1 +

√
J 21 + 4J0 J2

2
√
J0(J0 − (p + 1))

,

(13)

where a∗ = ∑
yi≤ci a0i −(a+ 1

b )
∑

yi>ci a1i , b
∗ = ∑

yi≤ci b0i −(a+ 1
b )
∑

yi>ci b1i ,

ȳ =
∑

yi≤ci
b0i ci−(a+ 1

b )
∑

yi>ci
b1i yi

b∗ , x̄� = (x̄·1, . . . , x̄·p), x̄· j
=

∑
yi≤ci

b0i xi j−(a+ 1
b )
∑

yi>ci
b1i xi j

b∗ , j = 1, . . . , p, and

K = D−1B2, L = −D−1B1,

B1 = M� (ρ ◦ a0) −
(
a + 1

b

)
M� ((1n − ρ) ◦ a1) ,

B2 = X� (ρ ◦ b0 ◦ (v − 1n ȳ)) −
(
a + 1

b

)
· X� (In − D(ρ)) (b1 ◦ ( y − 1n ȳ)) ,

D = M� · D (ρ ◦ b0) · M −
(
a + 1

b

)
· M� · D (b1 ◦ (1n − ρ)) · M,

ρ = (ρ1, ρ2, · · · , ρn)
� , Xn×p = (x1, x2, · · · , xn)� ,

ak = (ak1, ak2, · · · , akn)
� , bk = (bk1, bk2, · · · , bkn)

� , k = 0, 1,

M = (
mi j
)
n×p , mi j = xi j − x̄· j ,

y = (y1, y2, · · · , yn)
� , J0 = n − nc,

J1 = (ρ ◦ a0)�(v − 1n ȳ + MK) −
(
a + 1

b

)
· ((1n − ρ) ◦ a1)�( y − 1n ȳ + MK),

J2 = (ρ ◦ b0)�[(v − 1n ȳ − MK) ◦ (v − 1n ȳ − MK)]
−
(
a + 1

b

)
· ((1n − ρ) ◦ b1)�[( y − 1n ȳ − MK) ◦ ( y − 1n ȳ − MK)].

Here v = (v1, · · · , vn) and D(x) is the diagonal matrix of the vector x, ◦ denotes the
Hadamard product, In is a n × n identity matrix, and 1n denotes a n × 1 vector with
element 1. It is clear that the MML estimator can be regarded as a weighted sum of
data, with weights given by b0i and b1i .

It is well-known that the MML estimators are asymptotic equivalence to ML esti-
mators. Theorem 1 establishes the equivalence for the TPGT-CR model. Theorem 2
gives the asymptotic distribution of the MML estimators defined in Eq. (13).

Theorem 1 TheMMLestimators β̂0MML , β̂MML and σ̂MML are asymptotically equiv-
alent to the ML estimators.
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Proof See Appendix A.1. ��
Theorem 2 (Limiting distribution of the MML estimators) The MML estimators
asymptotically follow a normal distribution, with the mean parameter as θ and the
covariance matrix as I−1(θ), where I (θ) is defined in Sect.3.5.

Proof See Appendix A.2. ��
Note that the differences hk(z(i))−(aki −bki z(i)), k = 0, 1 tend to zero as n → ∞.

This confirms the conclusion that the MML estimators in formula (13) are asymptot-
ically equivalent to the ML estimators.

The plots of h0(z(i)), h1(z(i)), and the approximations obtained from Eq. (10) are
shown in Fig. 2 for the TPGTdistributionwith sample size n = 100 and 10%censoring
level. We observe that in symmetric cases with r = 0, the approximations closely
match the original values for h0(z(i)) and h1(z(i)). On the other hand, in skewed
cases with r = 0.5, the results indicate that due to the decreased smoothness of h0
when z(i) is small, the effectiveness of the Taylor approximation diminishes. Similarly,
the non-differentiability of h1 near 0 leads to a decrease in the effect of the Taylor
approximation. However, overall, Eq. (10) demonstrates satisfactory approximations
for h0(·) and h1(·).

In summary, the MML estimators have several appealing properties: (i) The MML
method is computationally more efficient than the ML method because the MML
estimators are explicitly formulated; (ii) The MML estimators are asymptotically
unbiased, asymptotically equivalent to theML estimators, and haveminimumvariance
bound; see Tiku and Suresh (1992); (iii) Fig. 3 shows that the MML estimators are
highly robust to outliers since the weights b0i and b1i are small for larger and smaller
observations.

From the theoretical perspective, theMML estimators developed under the assump-
tion of TPGT distribution provide robust estimators and are insensitive to the initial
estimators. In practical terms, the estimators obtained in this paper are reliable and. The
proposed TPGT-CR model can be used for fitting continuous data with high kurtosis
and strong skewness. It should be noted that the MML estimator was first presented
in the context of the multiple linear regression model with TPGT distribution, which
is another contribution of the current paper.

For comparison, we also consider the Tobit and SCLS (Powell 1986) estimators.
The SCLS relies on conditional symmetry and unimodality of the error distribution
in the case of truncation in CR model. This assumption leads to the SCLS estimator
minimizing

1

n

n∑
i=1

{[
Vi − max

{
Vi
2

, β0 + x�
i β

}]2

+I{Vi > 2(β0 + x�
i β)}

[(
Vi
2

)2

− max
{
c, β0 + x�

i β
}2]}

.

Both estimators have been shown to be consistent and asymptotically normally dis-
tributed for awide range of distributions. The use of numericalmethods of optimization
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Fig. 2 Plotting of original and the approximated values of h0(z(i)) and h1(z(i)) for TPGT-CR model with
n = 100 and 10% censoring level

Fig. 3 Line graphs of the weights b0i and |b1i | for TPGT-CR model with fixed sample size n = 100
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are required to obtain the above estimates. We can use the Nelder -Mead algorithm
inR.

3.4 Implementation details

It is worth noting that the MML method may give numerically unreliable results if
all parameters are estimated simultaneously unless the sample size is large enough.
As in many applications, the model parameters are what we focus on. The MML
method succeeds in estimating the regression and scale parameters but it cannot give
a satisfactory estimate for the distribution parameter; see Yalçınkaya et al. (2018). In
this case, we have employed the user-specified approach described in Acitas et al.
(2013), Arslan and Genc (2009), Lucas (1997). The parameters r , a and b can be
fixed in advance or estimated from the data for a robust procedure. The following two
strategies can be adopted.

Identification of the skewing factor and shape parameters
As suggested by one anonymous reviewer, it is essential to clarify the estimation for

the three parameters r , a and b. As the first and simplest strategy, we can try different
fixed values of r , a and b parameters until the largest value of the KS test statistic and
the smallest values of model selection criteria have been obtained. The values of r , a
and b can alternatively be identified by plotting the QQ-plots of residuals (see Acitas
et al. 2013).

In the second strategy, we develop a two-step estimate procedure (comprising the
ML step and the MML step, respectively) as follows.

1. Initialize β̂0, β̂, σ̂ and estimate r , a, b by theML estimate proposed by Lian et al.
(2024);

2. Using the estimated values of parameters r , a, and b obtained in step 1 as initial
values, optimize the likelihood function of TPGT-CR. Select the values of r̂ , â,
and b̂ that maximize the likelihood function of TPGT-CR.

3. Calculate the MML estimates β̂0MML , β̂MML , σ̂MML for given r̂ , â and b̂ values
from step 2.

We adopted this strategy in this paper to determine the parameter values of r , a and
b, in simulation studies and in real data analysis.

Notes on implementation

• Note that the denominator 2J0 was replaced by 2
√
J0(J0 − (p + 1)) in σ̂MML as

a bias correction; see Arslan and Senoglu (2018).
• The final MML estimators in real data are obtained by the following steps: (a)
For given r , a and b values, first obtain the Tobit estimates as the initial values
for parameters β0,β and σ to calculate the values of zi , i = 1, · · · , n. Then the
MML estimators are computed using steps 1–4 in Sect. 3.3 based on {zi }ni=1.
(b) Repeat the process in step (a), with the initial values for the parameters β0,β

and σ replaced by theMML estimates obtained in step (a). Note that two iterations
are enough to stabilize the estimates (Acitas et al. 2021).
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3.5 Standard error approximation

To estimate the standard error of the MML estimates of θ = (β0,β
�, σ )�, we exploit

an information-based method suggested by Arslan and Senoglu (2018), Lin (2010)
and Vaughan and Tiku (2000). It has been proved that the likelihood equation is
asymptotically equivalent to the modified likelihood equations. Thus, we can obtain
the asymptotic covariance matrix of the MML estimators β̂0MML , β̂MML and σ̂MML

using the second-order derivatives of the modified likelihood equations. Notably, the
information matrix I (θ) is symmetric by definition, as indicated by its structure. The
explicit expression for the symmetric information matrix I (θ) is presented as follows

I (θ) =
⎡
⎣ I11 I12 I13
I21 I22 I23
I31 I32 I33

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

−E

(
∂2 ln L∗

∂β2
0

)
−E

(
∂2 ln L∗
∂β0∂β�

)
−E

(
∂2 ln L∗
∂β0∂σ

)

−E
(

∂2 ln L∗
∂β∂β0

)
−E

(
∂2 ln L∗
∂β∂β�

)
−E

(
∂2 ln L∗
∂β∂σ

)
−E

(
∂2 ln L∗
∂σ∂β0

)
−E

(
∂2 ln L∗
∂σ∂β�

)
−E

(
∂2 ln L∗

∂σ 2

)

⎤
⎥⎥⎥⎥⎦ ,

and

I11 = b∗

σ 2 , I12 = b∗

σ 2 · x̄ ,

I13 = 1

o2

{∑
yi≤ci

b0i ti −
(
a + 1

b

) ∑
yi>ci

b1i ti

}
,

I22 = 1

σ 2

{∑
yi≤ci

b0i · xi x�
i −

(
a + 1

b

) ∑
yi>ci

b1i · xi x�
i

}
,

I23 = − 1

σ 2

{∑
yi≤ci

(a0i − b0i ti ) xi −
(
a + 1

b

) ∑
yi>ci

(a1i − b1i ti ) xi

}
,

+ 1

σ 2

{∑
yi≤ci

b0i xi ti −
(
a + 1

b

) ∑
yi>ci

b1i xi ti

}
,

I33 = −1

σ 2

{∑
yi≤ci

(2a0i ti − 3b0i E(z2(ri )))

−
(
a + 1

b

) ∑
yi>ci

(2a1i ti − 3b1i E(z2(ri ))) + n − nc

}
.

Note that E(z2(ri )) can be given by Section B. Then, standard error estimates of θ̂

can be obtained by inverting I (θ) under some regularity conditions. It is important to
emphasize that the SE of r , a, and b depends heavily on the computation of expec-
tations which relies on computationally intensive Monte Carlo integrations. In our
paper, we focus solely on calculating the SE of θ .
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4 Residual analysis

The residual analysis aims to identify outliers observations and to study departures
from the error distribution assumption. To investigate departures from the assumption
of errors and identify outliers, various residual analyses have been proposed in the lit-
erature [see Collett (2003) and Ortega et al. (2003)]. Pescim et al. (2017) and Carrasco
et al. (2008) developed the analysis of residuals for a log-location regression model
and a log-modified Weibull regression model. Following their works, we consider
residual analysis for the TPGT-CR model based on the modified deviance residual
defined as follows.

Let S(yi ; θ) denote the survival function of Yi , then it can be estimated as

S(yi ; θ̂) = 1 − F0

(
yi − β̂0 − x�

i β̂

σ̂
; r , a, b

)
,

where F0(·) is given in Eq. (4). The martingale residual was proposed in counting
processes (see [10]). Thus, the martingale residual for the TPGT-CR model takes the
form

rMi =
{
log[S(yi ; θ̂)] if ρi = 1 (i.e. yi ≤ ci ) ,

1 + log[S(yi ; θ̂)] if ρi = 0 (i.e. yi > ci ) ,
i = 1, . . . , n. (14)

Due to the skewed form of the distribution of rMi (−∞ ≤ rMi ≤ 1), transforma-
tions to produce a new residual symmetrically distributed around zero would be more
appropriate for residual analysis. In this case the modified deviance residual (rDi )
introduced by Collett (2003) is given by

rDi = sign(rMi )
{−2[rMi + (1 − ρi ) log(1 − ρi − rMi )]

} 1
2 ,

where rMi is the martingale residual defined in (14). The residual rDi applied to the
TPGT-CR model can be expressed as

rDi =
{
sign (qi ) {−2qi } 1

2 if ρi = 1,

sign (1 + qi ) {−2 − 2qi − 2 log(−qi )} 1
2 if ρi = 0,

(15)

where qi = log[S(yi ; θ̂)].

5 Monte Carlo simulation

In this section, a series of simulation studies are conducted to investigate the perfor-
mance of the proposed MML estimates in Sect. 3.3. Three studies are designed to
demonstrate the effectiveness of the proposed MML estimates, especially in dealing
with highly skewed and heavily tailed data, to check the robustness of the MML esti-
mates when there exist plausible deviations from an assumed model as well as its
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Fig. 4 Design I : Bias and RMSE of different estimators of slope coefficient (true βi = 1, i = 1, 2, 3)
in 1000 random trials for TPGT-CR model with n = 20, 30, 50, 100, 200 observations when the level of
censoring is 10%

sensitivity in the presence of outliers, and to verify the asymptotic normality of the
MML estimates. For the sake of data generation, one of the simplest ways to generate
left-censored data is to consider ci = min{Yi +U (2)

i ,Yi −U (1)
i + 1} as recommended

in Gómez et al. (2009), Mirfarah et al. (2021). Here U (1)
i and U (2)

i are two indepen-
dent continuous variables followed by standard uniform distribution U(0, 1). For the
random samples y1, · · · , yn generated from the TPGT-CR model (5), the following
steps are used to obtain a k% left-censored dataset.

(1) Compute the number of censored samplesNc = [n× k]+1, and then generate an
index set IND of sizeNc from {1, 2, · · · , n}. UseR function sample(·) without
replacement for this purpose.

(2) For i = 1, . . . , n, if i ∈ Nc, we first generate two random samples u(1)
i and u(2)

i

independently fromU(0, 1), and then set the thresholds to ci = min{yi +u(2)
i , yi −

u(1)
i + 1}.
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Fig. 5 Design I I : Bias and RMSE of different estimators of slope coefficient (true βi = 1, i = 1, 2, 3)
in 1000 random trials for TPGT-CR model with n = 20, 30, 50, 100, 200 observations when the level of
censoring is 10%

5.1 Finite sample properties of theMML estimates

In this subsection, we present a Monte Carlo study to assess finite-sample properties
of the proposed MML estimators of the TPGT-CR model. The proposed TPGT-CR
is compared with Student-t censored regression (T-CR) model (Arellano-Valle et al.
2012), SMN-CR model (Garay et al. 2017), Tobit models and SCLS estimates. The
Tobit model is implemented using the tobi t function from the AER package. To
evaluate the bias and efficiency of the MML estimators, we compared these models
under different levels of censoring and various error distributions. The specific design
of the Monte Carlo study is as follows:

(1) We generate data using a multiple censored regression model as follows

Yi = β0 + x�
i β + εi , εi

i id∼ TPGT (0, σ, r , a, b) , i = 1, · · · , n, (16)
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Fig. 6 Design I I I : Bias and RMSE of different estimators of slope coefficient (true βi = 1, i = 1, 2, 3)
in 1000 random trials for TPGT-CR model with n = 20, 30, 50, 100, 200 observations when the level of
censoring is 10%

where xi = (xi1, xi2, xi3)�, xik ∼ N (0, 1), k = 1, 2, 3. Without loss of general-
ity, in model (5), β0 and σ are taken to be 1, and β = (1, 1, 1)�.

(2) To explore the finite sample properties of ourMML estimators across various error
term distributions, εi is generated based on the following four designs.

• Design I : Symmetry with light tails: εi ∼ T PGT (0, 1, 0, 20, 2), i.e. εi ∼
N (0, 1).

• Design I I : Lightly skewed with light tails: εi ∼ T PGT (0, 1, 0.1, 6, 3).
• Design I I I :Moderately skewedwithheavy tails: εi ∼ T PGT (0, 1,−0.5, 6, 2).
• Design I V : Highly skewed with heavy tails: εi ∼ T PGT (0, 1,−1, 20, 3).

The designs above encompass symmetric and skewed, light-tailed and heavy-
tailed, as well as leptokurtic and platykurtic distributions.

(3) We wish to compare the small sample properties of the four estimators for the
proposed censored regression model. Thus, for each model, we replicate the simu-
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Fig. 7 Design I V : Bias and RMSE of different estimators of slope coefficient (true βi = 1, i = 1, 2, 3)
in 1000 random trials for TPGT-CR model with n = 20, 30, 50, 100, 200 observations when the level of
censoring is 10%

lation N = 1000 times with sample size n = 20, 30, 50, 100 and 200. Further, Yi
was subjected to left-censoring. The levels of censoring are taken as low (10%),
middle (20%) and high (30%). The left censoring point ci is chosen such that the
censoring rate equals the desired one.

(4) Finally, for each sample under different censoring levels, TPGT-CR, T-CR, SMN-
CR, Tobit models and SCLS estimators were applied. To compare the finite sample
performance of differentmethods, we report the absolute bias (Bias) and rootmean
square error (RMSE) of the parameter estimates of the slope coefficient β over the
1000 replicates:

Bias(θ) = 1

M

M∑
i=1

|θi − θ | and RMSE(θ) =
√√√√ 1

M

M∑
i=1

(θi − θ)2.

All computational procedures were implemented using the statistical softwareR.
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In this Section, Fig. 4, 5, 6 and 7 summarize the Bias and RMSE of the estimators
of the slope coefficient β obtained by TPGT-CR and four competing methods under
a 10% censoring level. Results for the symmetric and light-skewed error distributions
are reported in Fig. 4, 5, while those formoderate and highly skewed error distributions
are shown in Fig. 6, 7. For the simulation results corresponding to censoring levels of
20% and 30%, please refer to the Appendix C.

At 10% censoring, as sample size n increases, the four methods except SCLS show
comparable performance, as seen in Fig. 4. Notably, for symmetric distributions, the
advantage of MML estimates of TPGT-CR is particularly evident in small samples.
Figure5 shows that for a lightly skewed error distribution, TPGT-CR, T-CR, and SMN-
CR perform comparably well, all outperforming Tobit and SCLS. The SCLS estimator
does worst and is associated with the largest Bias and RMSE. It is evident from Figs. 6,
7 that the MML estimates of the TPGT-CR perform best in terms of Bias and RMSE
when the true distribution is moderately/highly skewed and heavy-tailed, under almost
all sample sizes.

From the results shown in Fig. 4, 5, 6 and 7, we observe a decrease in Bias and
RMSE of the MML estimators with increasing sample size n. However, Fig. 5 shows
that the Bias and RMSE of SCLS no longer strictly increase with increasing n for
parameter β2. For parameters β1 and β3, Tobit estimates exhibit similar performance.
Figures6 and 7 indicate that for all slope parameters, the Bias and RMSE of Tobit
and SCLS estimators no longer strictly decrease with increasing n. This is because
the SCLS estimator’s consistency requires a symmetric error term distribution, while
Tobit estimation requires a normal error distribution (Tobin 1958; Powell 1986). In
general, TPGT-CR exhibits significant advantages in fitting highly skewed and heavy-
tailed data. For symmetric and lightly skewed data, TPGT-CR performs comparably
to competing models.

In Appendix C, simulation results under censoring rates of 20% and 30% are given.
From Fig. 10, it can be observed that the Tobit estimator performs best for a censoring
rate of 20% when n = 20 and 30. However, in most cases, the TPGT-CR model
maintains the best performance. For details, please refer to Appendix C.

5.2 Robustness of the MML estimates

In this subsection, we aim at investigating the robustness of the MML estimate against
perturbation in the model (or data). In this regard, 1000 Monte Carlo samples of
size n = 200 are simulated from the left-censored TPGT-CR model proposed in
Sect. 3.1. We set β0 = 1,β = (1, 1, 1), σ = 1, and xi = (xi1, xi2, xi3)�, where xik
are generated from N (0, 1) for k = 1, 2, 3. We assume the true error distribution is
T PGT (0, 1, 0.1, 6, 3) as Design I I in Sect. 5.1. The considered censoring levels are
10%, 20% and 30%. The two aims of the simulation study in this subsection are: (i) to
evaluate the impact of the outliers on theMML estimates; (ii) to explore the robustness
of the MML against potential model misspecification. Thus, two experiments were
carried out as follows.

Experiment 1 In the first experiment, for the generated original censored samples,
we add a class of outliers with varying probability ranging from 2% to 6% as suggested
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in Mirfarah et al. (2021). To do so, the responses of outliers were set to the minimum
observation, namely y∗

i = ymin . To evaluate the performance of different estimation
procedures based on 1000 Monte-Carlo runs, the mean squared error (MSE; Acitas
et al. 2021) of the slope parameter vector β is calculated as

MSE = 1

1000

1000∑
s=1

||̂βs − β||22,

where β̂
s
denotes the estimates in sth replication and || · || denotes L2 norm. Table

1 shows the MSE values obtained using different estimation procedures, including
TPGT-CR, T-CR, SMN-CR, Tobit, and SCLS methods under various censoring levels
and the percentage of outliers in the data. The values of MSE of MML estimation
increase as the percentage of outliers and level of censoring increases. It should be
noted that the MMLmethod provides the smallest MSE for all situations. It highlights
that the MML estimates are much more robust to outliers due to the small weights
assigned to the extreme observations. For other sample sizes n and error distributions,
similar conclusions are obtained, so they are not shown to save space but can be
provided upon request of the authors.

Experiment 2 In the second experiment, we are interested in examining the robust-
ness of the proposed methodology against possible model misspecification. First, we
independently generated 1000 datasets (xi , yi ), i = 1, . . . , n with n = 200, where εi
are randomly generated from the following alternative models:

Model 1: TPGTmodel with misspecified shape parameters: T PGT (0, 1, 0.1, a =
4, b = 2);
Model 2: Mixture model: 0.9T PGT (0, 1, 0.1, 6, 3)+ 0.1T PGT (0, 2, 0.1, 6, 3);
Model 3: Contaminated model: 0.9T PGT (0, 1, 0.1, 6, 3) + 0.1N (−1, 1);
Model 4: Contaminated model: 0.9T PGT (0, 1, 0.1, 6, 3) + 0.1χ2

2 .

Here, χ2
k denotes the chi-squared distribution with k degrees of freedom. For models

2–4, we generated n observations, 0.9 ∗ n of which come from the former model
and 0.1 ∗ n of them come from the latter one. Then, we estimated the parameters
of the TPGT-CR model under the assumption that εi ∼ T PGT (0, 1, 0.1, 6, 3) and
computed the MSE of β. The simulated MSE values are tabulated in Table 2 under
the TPGT-CR and alternative models when the level of censoring is 10%, 20%, 30%
and n = 200.

Table 2 reveals the following findings. Firstly, the MML estimates of the TPGT-CR
model has the smallest MSE among the five methods considered. Secondly, while the
values of MSEs for the TPGT-CR model increase as the level of censoring increases,
TPGT-CR consistently performs reasonably well even under higher censoring lev-
els when there is a plausible deviation from the assumed model. This indicates that
the MML estimates under TPGT-CR model is robustness to model misspecification.
Lastly, the TPGT-CR model outperforms others for all scenarios, followed by SMN-
CR, T-CR and Tobit; SCLS performs the worst, indicating that SCLS depends heavily
on the model assumptions.
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5.3 The asymptotic normality of theMML estimators

In this subsection, we conducted a simple simulation study to evaluate the asymp-
totic normality of the MML estimators. We independently simulated 1000 data sets
(xi , yi ), i = 1, . . . , n with n = 100, 200, 500, 700 from the proposed TPGT-CR
model with 10% censoring level, where εi ∼ T PGT (0, 1, 0.1, 6, 3) and the design
considered here is the same as themodel discussed in Sect. 5.2. To examine the asymp-
totic normality of the MML estimators, Fig. 18 in Appendix C shows the QQ-plots
for a normal fit to the 1000 standardized MML estimators of β0,β, σ , as well as the
95% confidence envelopes. The diagonal represents the line drawn when the theo-
retical quantiles perfectly match the sample quantiles. All these plots fall within the
confidence bands of the normal distribution for the larger sample size n = 200, 500
and 700, which clearly supports that MML estimators are asymptotically normally
distributed.

It can be seen that some points in QQ-plots of β1, β2, β3 with n = 100 fall
outside the theoretical 95% confidence envelopes. Thus, a comparison is also carried
out between the empirical distribution and the theoretical distribution based on the
corresponding Kolmogorov-Smirnov (K-S) test statistic to verify the results in Fig. 18.
Table 3 lists the p-values of K-S normality tests. Note that the smallest p-value is
0.0823, which indicates that we can accept the null hypothesis of being a normal
distribution at the 0.05 significance level. The small p-values of β1, β2, β3 for n = 100
are observed in Table 3. All results match the conclusion from Fig. 18.

Based on the above findings, we can conveniently construct asymptotic confidence
intervals and hypothesis tests for the parameters of interest for the proposed TPGT-CR
model.

5.4 Residual analysis

In this simulation study, we investigate the empirical distributions of the modified
deviance residuals (rDi ) for different values of n and censoring levels. We consider
n = 50, 200, and 700 (close to the sample size of real data), and 10%, 20% and 30%
censoring levels. We set β0 = 1,β = (1, 1, 1), σ = 1, and xi = (xi1, xi2, xi3)�,
where xik are generated from N (0, 1) for k = 1, 2, 3. The data were generated using
the TPGT-CR model in (5) and (6), where εi ∼ T PGT (0, 1, 0.1, 6, 3).

For each configuration of n and censoring level, 1000 samples were generated, and
each one was fitted under the TPGT-CR model using the proposed MML method.
For each fit, the residuals rDi were calculated. Figure19 in Appendix C shows the
normal QQ-plots of the the modified deviance residuals. As we can see from Fig. 19,
the empirical distribution of the residuals rDi presents a better agreement with the
standard normal distribution for a large sample n = 200 and 700. It can be observed
that, as the censoring levels decrease and n increases, the empirical distribution of the
residual rDi approaches closer to the normal distribution.

123



Modified maximum likelihood estimator... Page 23 of 45    50 

Ta
bl
e
3

P-
va
lu
es

fr
om

th
e
K
ol
m
og

or
ov
-S
m
ir
no
v
no

rm
al
ity

te
st
un

de
r
va
ri
ou

s
ce
ns
or
in
g
le
ve
ls
an
d
sa
m
pl
e
si
ze
s
n

M
M
L
es
tim

at
or

↓
10
%

ce
ns
.

30
%

ce
ns
.

n
10

0
20

0
50

0
70

0
10

0
20

0
50

0
70

0

β̂
0

0.
91

75
0.
52

28
0.
59

32
0.
74

69
0.
99

59
0.
49

74
0.
75

52
0.
98

95

β̂
1

0.
08

23
0.
60

57
0.
91

87
0.
23

85
0.
51

78
0.
48

76
0.
78

83
0.
82

69

β̂
2

0.
30

57
0.
96

38
0.
65

85
0.
96

91
0.
84

16
0.
97

75
0.
90

26
0.
94

85

β̂
3

0.
15

20
0.
75

74
0.
70

55
0.
84

39
0.
77

95
0.
68

63
0.
44

11
0.
99

42

σ̂
0.
35

38
0.
84

93
0.
77

31
0.
88

70
0.
58

73
0.
62

56
0.
60

69
0.
93

74

123



   50 Page 24 of 45 C. Lian et al.

6 An empirical example: the wage rates data

To illustrate the proposed regression methodology, we use a dataset obtained from
Mroz (1987), which is available in the R package CensRegMod. The code can
be found at https://github.com/chengdi588/Modified-MLE-of-TPGT-CR-model.git.
The dataset contains 753 wage rates (hours worked outside the home) and several
other characteristics of married white women between the ages of 30 and 60 in 1975,
of whom 325 worked zero hours. It is important to emphasize that wage rates are
assumed to be zero for wives not working in 1975, (i.e. they are censored or simply
unobserved), which means 43.16% degree of censoring. This is a common assumption
in economics; see DaVanzo and Lee (1978). This dataset has been previously analyzed
by Arellano-Valle et al. (2012) using the T-CR model, by Caudill (2012), Karlsson
and Laitila (2014) and Zeller et al. (2019) to illustrate the performance of the finite
mixture of censored regression models based on the normal distribution. In this paper,
we revisit this dataset in order to expand the inferential results to the TPGT family
and to evaluate the performance of MML estimates.

Following the work of Arellano-Valle et al. (2012), we consider the housewife’s
wage rates as the response variable (y), and the explanatory variables include the
wife’s age (x1), the wife’s education in years (x2), the number of kids younger than
6 years old in the household (x3) and the number of children between the ages of six
and nineteen (x4). Thus, the model is given by

yi = β0 + β1x1 + β2x2 + β3x3 + β4x4 + εi , i = 1, . . . , 753.

We consider that εi ∼ T PGT (0, σ, r , a, b). Before employing the MML method to
estimate the TPGT-CR model, we first need to identify the plausible values of the
skewing factor r , and two shape parameters a and b. The second strategy explained in
Sect. 3.4 was adopted, and r , a, b are identified as −0.4822, 1.5 and 1.7, respectively.
Based on r̂ , â and b̂, model parameters β0,β and σ are estimated by using the MML
method.

We compare our results with three comparative models, T-CR (Arellano-Valle et al.
2012), Tobit and skew-normal censored regression (SN-CR) models (Mattos et al.
2018) in terms of log-likelihood (�(̂θ)), Akaike information criterion (AIC), Bayesian
information criterion (BIC) andEfficient determination criterion (EDC). Table 4 shows
the results. In all CR models, the consistent signs of the estimate of β1, β2, β3, β4
indicate that the effect of the four covariates on the response variable is consistent
across the three models. Specifically, the wife’s age (x1), the number of children
younger than 6 years old in the household (x3), and the number of children between
the ages of six and nineteen (x4) all have negative effects on wage rates. Only the
wife’s education in years (x2) has a positive effect on wage rates, with x3 having
the highest negative effect on y. This aligns with practical realities. Table 4 shows
that the estimate of scale parameter σ of the SN-CR model is the largest. The values
of standard errors of the parameters for the TPGT-CR model are calculated via the
empirical information matrix presented in Sect. 3.5. It can be seen that the estimates
of the TPGT-CR model have smallest standard errors, indicating that the TPGT-CR
model can provide more accurate estimates.
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Table 4 summaries the results of model selection criteria of the TPGT-CR, T-CR,
Tobit and SN-CR models. It should be noted that the values of AIC, BIC, EDC of the
proposed TPGT-CR model is smallest than that for the other two comparison models.
This indicates that the TPGT-CR model provides a better fit to the wage rates data
compared to the other models.

In addition, we conduct three likelihood ratio test (LRT) to test the following null
hypotheses

H0 : error terms follow a normal distribution,

H0 : error terms follow a t distribution,

H0 : error terms follow a SN distribution

against the alternative H1 : error terms follow a TPGT distribution. The LRT statis-
tics are 110.4614, 27.4413 and 88.3544, respectively, which are highly significant
compared to the critical values of the χ2

2 and χ2
3 distributions. Figure8 shows the

histogram of y overlaid with the best-fitted TPGT density curves and the correspond-
ing probability-probability (PP) plot for the TPGT fit without covariates. It is clear to
see that the fitted TPGT distribution adapts the shape of the histogram satisfactorily
from Fig. 8b. Figure8a indicates an underlying moderately skewed and heavy-tailed
distribution, and thus it seems suitable for fitting the TPGT model to the data.

6.1 Residual analysis

To detect possible outliers in fitting the TPGT-CR models for wage rates data, Fig. 9
provides the index plot of the modified deviance residuals rDi . We observe that very
few observations may be outliers, suggesting that the TPGT-CR model provides a
good fit to wage rates data.

7 Conclusion and discussion

We have proposed a linear censored regression model based on the two-piece gener-
alized t distributions, denoted by TPGT-CR models, as a replacement of symmetric
distribution for censored regressionmodels. The TPGT-CRmodel accommodates cen-
soring to the responses, asymmetry and heavy tails, therefore, can be applied to a wide
range of applications. We proposed a robust MML estimation approach in the ran-
dom censoring setting, which includes more sources of data contamination (Li and
Peng 2017; Salah and Yousri 2019). We derived the closed-form expressions of MML
estimators based on the TPGT-CR model. Finite sample performance of the proposed
MML estimators were evaluated through extensive simulation studies and an applica-
tion to a wage rates dataset. The results demonstrated the superiority of our proposed
method over with the traditional estimators such as Tobit, CLAD and SCLS.

There are diverse possible extensions of the current work. One limitation of the
current work lies in that if the measurement errors are interval-censored, the current
MML method may not be directly used to estimate such models. This is because the
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Fig. 8 Wage rates data. Histogram of the response variable y overlaid with TPGT density estimate and the
PP-plot for the TPGT distribution

Fig. 9 Wage rates data. Index plot of the modified deviance residuals rDi

modified likelihood equations for interval-censored data are complicated, which adds
to the complexity in implementation. In addition, it would be a worthwhile task to
evaluate the qualitative robustness of the parameter estimators of β0,β and σ when
r , a and b are known or not. To modelling multivariate data, a further extension of
the current work to the multivariate case and mixtures of linear experts model could
also be developed via the use of copulas, see for instance (Fernández and Steel 1999;
Wang 2023; Zeng et al. 2017).

Appendix A Proofs

A.1 Proof of Theorem 1

Proof Uncensored case: The asymptotic equivalence of theMLandMMLestimators
is established by applying a general result in Hoeffding (1953) regarding the sum of
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a function evaluated at the expected values of order statistics. First, note that the
absolute values of the following functionsw1(z) = h1(z), w2(z) = z ·h1(z),w3(z) =
h0(z) and w4(z) = z · h0(z) are dominated by nonnegative convex functions with
finite expectations (with respect to the TPGT distribution), where h0(·), h1(·) are
defined in (9). Hence, by the result of Hoeffding (1953), limn→∞ 1

n

∑n
i=1 w j (ti :n) =

E
[
w j (Z)

]
, j = 1, 2, 3, 4, where Z ∼ T PGT (0, 1, r , a, b), ti :n = E

[
z(i)
]
, vi :n =

Var
(
z(i)
)
denote the expected value and variance of the i th order statistic from a

random sample of size n drawn from Z ’s distribution. Thus, we have

lim
n→∞

n∑
i=1

h1 (ti :n)
n

= E [h1(Z)] = 0,

lim
n→∞

n∑
i=1

h1 (ti :n) ti :n
n

= E [Z · h1(Z)] =
(
a + 1

b

)−1

.

(A1)

From these results, it is easy to establish (a1i and b1i defined as before)

lim
n→∞ E

{
1

n

n∑
i=1

(
h1
(
z(i)
)− a1i + b1i z(i)

)} = 0,

lim
n→∞ E

{
1

n

n∑
i=1

(
h1
(
z(i)
)
z(i) − a1i z(i) + b1i z

2
(i)

)}
= 0,

Asymptotically, therefore, 1
n E

(
∂ ln L∗

∂β0

)
= 0, similarly, 1

n E
(

∂ ln L∗
∂β

)
= 0, and

1
n E

(
∂ ln L
∂σ

) = 0. The asymptotic equivalence of the ML and MML information matri-
ces and the asymptotic unbiasedness of the estimators now follow. This is primarily

the reason that 1
n

∣∣∣ ∂ ln L∂β0
− ∂ ln L∗

∂β0

∣∣∣ , 1
n

∣∣∣ ∂ ln L∂β
− ∂ ln L∗

∂β

∣∣∣ and 1
n

∣∣∣ ∂ ln L∂σ
− ∂ ln L∗

∂σ

∣∣∣ tend to

zero as n tends to infinity (see Vaughan and Tiku 2000, p. 57).
Censored case: MML estimators are known to be asymptotically equivalent to

ML estimators under some general regularity conditions. A rigorous proof of this is
provided in Bhattacharyya (1985) for censored samples (see Bhattacharyya 1985, p.
404). For the model in this paper, it suffices to focus on the following results. For a
fixed censoring ratio γ , as n → ∞, we have nc = [nγ ](the integer part of nγ ) tends
to ∞ and

lim
nc→∞

nc∑
i=1

h0 (ti :n)
nc

= E [h0(Z)] < ∞,

lim
nc→∞

nc∑
i=1

h0 (ti :n) ti :n
nc

= E [Z · h0(Z)] < ∞,
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where

E [h0(Z)] = b

2(2a)
1
b
[
B
(
a, 1

b

)]2 ×
{∫ 1

0
t2a+ 1

b−1(1 − t)
1
b−1 I−1

(
t; a,

1

b

)
dt+

1 + r

2

∫ 1

0
t2a+ 1

b−1(1 − t)
1
b−1

[
1 − 1 + r

2
I

(
t; a,

1

b

)]−1

dt

}
,

E [Z · h0(Z)] = b[
B
(
a, 1

b

)]2 ×
{
− (1 − r)

2

∫ 1

0
t2a−1(1 − t)

2
b−1 I−1

(
t; a,

1

b

)
dt

+ (1 + r)2

4

∫ 1

0

t2a−1(1 − t)
2
b−1

1 − 1+r
2 I

(
t; a, 1

b

)dt
}

.

The above expectations are all finite, as verified by numerical computation. Thus, we
have

lim
nc→∞ E

{
1

nc

nc∑
i=1

(
h0
(
z(i)
)− a0i + b0i z(i)

)} = 0,

lim
nc→∞ E

{
1

nc

nc∑
i=1

(
h0
(
z(i)
)
z(i) − a0i z(i) + b0i z

2
(i)

)}
= 0.

Following Sect. 6 of Bhattacharyya (1985) will complete the proof [see Tiku and
Sürücü (2009), Bhattacharyya (1985)]. ��

A.2 Proof of Theorem 2

Proof Asymptotic normality of the MML estimators can be obtained from the basic
tools developed in Sect. 2 of Bhattacharyya (1985). The main result of Bhattacharyya
(1985) is the utilization of awell-known andwidely applied property of order statistics.

First, to apply Theorem 1 of Bhattacharyya (1985) to obtain asymptotic normality
results for the ML estimators, we introduce some notation. Let g(yi ; θ) = (a + 1/b) ·(
h1(zi ), x�

i h1(zi ), zi h1(zi ) − 1
a+1/b

)�
, m(yi ; θ) = (h0(zi ), x�

i h0(zi ), zi h0(zi ))
�,

zi = vi−β0−x�
i β

σ
, h0(·), h1(·) are defined in (9), and fyi (·) denotes the pdf of yi . For a

fixed censoring ratio γ , ζ denote theγ -quantile of the distribution of yi . To establish the
asymptotic normality of theML estimators, we need to verify the following conditions.
Let gl andml denote the lth coordinate ofg andm respectively,where l = 1, · · · , p+2,
then we have: (a) m

′
l(yi ) = dml(yi )/dyi = 1

σ
dml(yi )/dzi exists at yi = ζ , (b) gl(yi )

is continuous at ζ , and (c)
∫ ζ

−∞ g2l (yi ) fyi (yi )dyi < ∞. This last follows from the fact

that E
[
h21(Z)

] = b2B(a+2/b,2−1/b)
(2a)2/b B(a,1/b)(1−r2)

< ∞ and E
[
Z2h1(Z)

] = b2B(a,2+1/b)
B(a,1/b) < ∞,

where Z ∼ T PGT (0, 1, r , a, b). To obtain explicit expressions for the mean and
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covariance, using these results for yi = ζ , the expressions (2.3) in Bhattacharyya
(1985) for the present case simplify to

μ = 0,

J(θ) = −
{∫ +∞

ζ

∂g(yi ; θ)

∂θ
fyi (yi )dyi + γ

∂m(yi ; θ)

∂θ

}
.

It follows that J(θ) = I (θ)
n , if the censoring ratio γ = 0, where I (θ) is defined in

Sect. 3.5.
Then, by using results from Section 6 of Bhattacharyya (1985), we can establish

the asymptotic normality result of the MML estimators for the TPGT-CR model as
follows

√
n
(̂
θMML − θ

) → Np+2

(
0, J−1(θ)

)
.

��

Appendix B TheMoments of Order Statistics

Since ti values have an important effect on the implementation of MML estimation.
In this subsection, we derive the explicit expression for the expected values of the
standardized order statistics for TPGT distribution under the independent identically-
distributed case.

The generalized Kampe de Feriet function from Exton (1978) is defined by

F A:B
C :D ((a) : (b1) ; · · · ; (bn) ; (c) : (d1) ; · · · ; (dn) ; x1, · · · , xn)

=
∞∑

m1=0

· · ·
∞∑

mn=0

((a))m1+···+mn ((b1))m1
· · · ((bn))mn

((c))m1+···+mn ((d1))m1
· · · ((dn))mn

× xm1
1 · · · xmn

n

m1! · · ·mn ! ,

where a = (a1, a2, · · · , aA) , bi = (
bi,1, bi,2, · · · , bi,B

)
, c = (c1, · · · , cC ),

di = (
di,1, · · · , di,D

)
for i = 1, 2, · · · , n and (( f ))k = ((

f1, f2, · · · , f p
))

k =
( f1)k · · · ( f p)k , ( fi )k = fi ( fi + 1) · · · ( fi + k − 1). By using the above special func-
tion, we derive the following theorem:

Theorem 3 The kth moment of order statistics Xi :n from T PGT (0, 1, r , a, b) can be
calculated by the following convergent expression

E
(
Xk
i :n
)

= Ci,n [A(k, i, n) + B(k, i, n)] ,

where Ci :n = n!
(i−1)!(n−i)! ,

A(k, i, n) = (2a)
k
b (1 + r)k+1

2B
(
a, 1

b

)
i−1∑
j=0

(
i − 1
j

)
(−1) j

(
1 + r

2

)n−i+ j

A1( j), (B2)
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B(k, i, n) = (−1)k(2a)
k
b (1 − r)k+1

2B
(
a, 1

b

)
n−i∑
j=0

(
n − i
j

)
(−1) j

(
1 − r

2

)i−1+ j

B1( j),

(B3)

and

A1( j) = B
(
(n − i + j + 1)a − k

b , k+1
b

)
(
B
(
a, 1

b

)
a
)n−i+ j

× F1:2
1:1
(

(n − i + j + 1)a − k

b
:
(
1 − 1

b
, a

)
;

· · · ;
(
1 − 1

b
, a

)
; (n − i + j + 1)a + 1

b
: (a + 1) ; · · · ; (a + 1) ; 1, · · · , 1

)
,

(B4)

B1( j) = B
(
(i + j)a − k

b , k+1
b

)
(
B
(
a, 1

b

)
a
)i+ j−1 × F1:2

1:1
(

(i + j)a − k

b
:
(
1 − 1

b
, a

)
;

· · · ;
(
1 − 1

b
, a

)
; (i + j)a + 1

b
: (a + 1) ; · · · ; (a + 1) ; 1, · · · , 1

)
.

(B5)

Proof From the formula in Eq. (1), we readily have the integration form for E
(
Xk
i :n
)

as

E
(
Xk
i :n
)

= Ci,n

{∫ +∞

0
xk[F0(x)]i−1[1 − F0(x)]n−i f0(x)dx

+
∫ 0

−∞
xk[F0(x)]i−1[1 − F0(x)]n−i f0(x)dx

}

� Ci,n (A(k, i, n) + B(k, i, n)) ,

where

A(k, i, n) =
∫ ∞

0
xk
[
1 − 1 + r

2
Iu(x)(a, 1/b)

]i−1 [1 + r

2
Iu(x)(a, 1/b)

]n−i

f0(x)dx

= (2a)
k
b (1 + r)k+1

2B
(
a, 1

b

)
∫ 1

0

[
1 − 1 + r

2
Iu(a, 1/b)

]i−1 [1 + r

2
Iu(a, 1/b)

]n−i

× (1 − u)
k+1
b −1ua− k

b−1du

= (2a)
k
b (1 + r)k+1

2B
(
a, 1

b

)
i−1∑
j=0

(
i − 1
j

)
(−1) j

(
1 + r

2

)n−i+ j

A1( j).

Now, by using the known generalized multinomial theorem, we obtain

Iu

(
a,

1

b

)
= ua

B
(
a, 1

b

)
∞∑
k=0

(1 − 1
b )kuk

(a + k) k! ,
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and

[
Iu

(
a,

1

b

)]n0
=
[

ua[
B
(
a, 1

b

)]
]n0 ∞∑

m1+···+mn0=0

(1 − 1
b )m1 · · · (1 − 1

b )mn0

(a + m1) · · · (a + mn0

)

× um1+···+mn0

m1! · · ·mn0 !
, (B6)

where n0 = n − i + j , the relation in (B6) can be used to produce expressions in
Eq. (B4) for real non-integer values of a. We can proceed similarly to derive explicit
expressions for B(k, i, n) and B1( j). ��

Appendix C Simulation results

C.1 Further plots of the first simulation

In this section, we analyze simulation results under censoring rates of 20% and 30%.
The results are presented in Figs. 10, 11, 12 and 13 for a 20% censoring rate and
Figs. 14, 15, 16 and 17 for a 30% censoring rate. According to the results in Figs. 10, 11
and 14, 15, the relative performance of the five methods agrees with that at a 10%
censoring rate for symmetric and lightly skewed cases. In terms of Bias and RMSE,
Fig. 10 shows that the Tobit estimator performs best for n = 20, 30 when the error
distribution is normal. The TPGT-CRmodel is best for n = 50, 100, 200, while SMN-
CR, T-CR, and Tobit models are comparable. Again, the SCLS estimators exhibit the
largest biases and RMSEs across all sample sizes. Figure11 shows that TPGT-CR
exhibits a greater relative advantage in Design I I compared to Design I .

Figures 12 and 13 summarize the simulation results obtained for designs I I I and
I V at a 20% censoring rate. For moderately skewed and heavy-tailed distributions,
the TPGT-CR is generally associated with better results than SMN-CR and T-CR in
terms of Bias and RMSE. It can be seen that the advantage of TPGT-CR becomes
more pronounced for the censoring level of 30%. From Fig. 12, it is shown that as
the sample size n increases from 50 to 200, the bias and RMSE of Tobit and SCLS
also increase, indicating a lack of consistency in the Tobit and SCLS estimators for
skewed distribution. From Fig. 13, the TPGT-CR is still the best, followed by SMN-
CR model when error distribution has strong asymmetry and heavy tails. Because the
MMLmethod relies on order statistics rather than original data and all other estimators
directly or indirectly employ trimming of observations.

For highly skewed and heavy-tailed distributions, Tobit and SCLS exhibit the worst
performance for n = 20, 30, 200. This indicates that the symmetry and tail behavior
of the data significantly affect the bias and RMSE of SCLS (Powell 1986). Figure17
shows that only for n = 50, 100, the performance of Tobit is comparable to TPGT-CR
and SMN-CR. Furthermore, when comparing Figs. 16 and 17, we can observe that as
the degree of skewness increases, the performance of T-CR gradually worsens. This
result is reasonable because the T-CR method is better suited for modeling symmetric
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Fig. 10 Design I : Bias and RMSE of different estimators of slope coefficient (true βi = 1, i = 1, 2, 3)
in 1000 random trials for TPGT-CR model with n = 20, 30, 50, 100, 200 observations when the level of
censoring is 20%

data. Finally, Figs. 13 and 17 demonstrate the superiority of the TPGT-CR when the
error distribution is highly skewed, even under high censoring levels.
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Fig. 11 Design I I : Bias and RMSE of different estimators of slope coefficient (true βi = 1, i = 1, 2, 3)
in 1000 random trials for TPGT-CR model with n = 20, 30, 50, 100, 200 observations when the level of
censoring is 20%
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Fig. 12 Design I I I : Bias and RMSE of different estimators of slope coefficient (true βi = 1, i = 1, 2, 3)
in 1000 random trials for TPGT-CR model with n = 20, 30, 50, 100, 200 observations when the level of
censoring is 20%
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Fig. 13 Design I V : Bias and RMSE of different estimators of slope coefficient (true βi = 1, i = 1, 2, 3)
in 1000 random trials for TPGT-CR model with n = 20, 30, 50, 100, 200 observations when the level of
censoring is 20%
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Fig. 14 Design I : Bias and RMSE of different estimators of slope coefficient (true βi = 1, i = 1, 2, 3)
in 1000 random trials for TPGT-CR model with n = 20, 30, 50, 100, 200 observations when the level of
censoring is 30%
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Fig. 15 Design I I : Bias and RMSE of different estimators of slope coefficient (true βi = 1, i = 1, 2, 3)
in 1000 random trials for TPGT-CR model with n = 20, 30, 50, 100, 200 observations when the level of
censoring is 30%
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Fig. 16 Design I I I : Bias and RMSE of different estimators of slope coefficient (true βi = 1, i = 1, 2, 3)
in 1000 random trials for TPGT-CR model with n = 20, 30, 50, 100, 200 observations when the level of
censoring is 30%
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Fig. 17 Design I V : Bias and RMSE of different estimators of slope coefficient (true βi = 1, i = 1, 2, 3)
in 1000 random trials for TPGT-CR model with n = 20, 30, 50, 100, 200 observations when the level of
censoring is 30%

C.2 Further plot of the third simulation

See 18.
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Fig. 18 QQ-plots for normal distribution based on 1000 MML estimates. Sample sizes n =
100, 200, 500, 700, and 10% censoring levels
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Fig. 18 continued
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C.3 Further plot of the fourth simulation

See 19.

Fig. 19 QQ-plots of the modified deviance residual rDi . Sample sizes n = 50, 200, 700, and levels of
censoring = 10%, 20% and 30%
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