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ABSTRACT
The skewed generalized normal (SGN) distribution with four param-
eters is a versatile distribution that can effectively model data with
skewness and heavy or light tails. In this paper, we conduct two
classes of goodness of fit tests for the SGN distribution based on the
empirical distribution function (edf) and the sample correlation coef-
ficient. The first class involves transforming the sample into approx-
imately mixed gamma observations, and then applying five classical
parametric bootstrap edf-based goodness of fit tests. The second
class is based on the inverse probability transformation and utilizes
the sample correlation coefficient as the test statistic. We compare
the finite sample performances of the proposed tests for different
sample sizes and alternative distributions by extensive numerical
studies. The simulation results demonstrate that the proposed tests
provide a valid alternative to the standard tests using the original
data, and the analysis of real data illustrates its application.
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1. Introduction

With the advances in modern technologies, the application of skewed data has become
widespread in various fields, such as biostatistics, economics, education, and sociology,
among others. A typical example of such data is insurance risk data in finance and risk
management, where extreme tails and skewness are commonly observed (see [1]). To
model and analyse skewed data, existing literature has introduced various skewed distribu-
tions, including the three-parameter skew-normal (SN) (see [2–6]) and the four-parameter
skewed generalized normal (SGN) (see [7–10]) distributions. Azzalini [11] noted that the
SN distribution, due to its short tails, is not well-suited for situations requiring heavier
tails than the normal distribution. In contrast, the SGN, featuring an additional shape
parameter, tackles this problem by providing a broader range of skewness and enhancing
its flexibility. Since the works of [12,13], among others, recent studies have further clarified
the widespread application of the SGNmodel in diverse fields. For example, [14] effectively
applied the SGN inmodelling autoregressive (AR) time series processes, [15] used the SGN
in income modelling to capture asymmetry, and [16] employed the SGN distribution to
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analyse temperature data. Due to the widespread application of SGN distributions in eco-
nomics and environmental science, it is meaningful to develop a corresponding goodness
of fit (GOF) test. Due to the widespread application of SGN distributions in economics and
environmental science, it is meaningful to develop a corresponding goodness of fit (GOF)
test.

Most of the current research is primarily focussed on the goodness of fit testing prob-
lem for the skewed normal (SN) distributions ([2–6]). One of the pioneer works in this area
was done by Gupta and Chen [17]. They provided two conventional goodness of fit testing
methods, the Kolmogorov-Smirnov test, and Pearson’s χ2 test. Mateu-Figueras et al. [18]
proposed severalGOF test statistics from theKolmogorov-Smirnov andCramer-vonMises
families for the SN distribution, considering unknown location and scale parameters.
Building upon the work of [18], subsequent researchers have developed many goodness
of fit tests for the SN distribution. Rodríguez and Alva [19] provided two GOF tests for the
SN distribution based on the quantile function and the sample correlation coefficients. The
critical values were obtained using a parametric bootstrap method. Later, [20] introduced
an empirical likelihood ratio test to assess skew normality and derived the asymptotic dis-
tributions of the test statistic under both the null and alternative hypotheses. To address
the computational complexity, [21] developed a class of goodness of fit tests based on the
characteristic function, whichwas applied to the skew-t distributionwith knowndegrees of
freedom. For extensions to themultivariate case, [22] proposed efficient test statistics based
on the canonical form of the multivariate skewed normal distribution and derived the
null distribution accordingly. More recently, [23] proposed a general parametric bootstrap
edf-based goodness of fit tests for the sinh-arcsinh distribution. However, little research
provides a comparative analysis of the GOF tests of SGN distributions due to the com-
plexity of its cumulative distribution function, involving multiple parameters and special
functions.

Although testing procedures for the SN family of distributions are well-established in
the literature, to the best of our knowledge, there has been very little work on testing for
the SGN distributions against other distributions. Inspired by the above observations, this
paper focuses on developing goodness of fit tests for a novel SGN distribution. Lian et al.
[24] proposed a novel skewed generalized t (SGT) distributionwith parameters for location
μ, scale σ , skewness r, and two shape parameters α,β , as a scale mixture of the SGN distri-
bution. Notably, the SGN distribution is a special case of this SGT distribution proposed in
[24] when the shape parameter α approaches infinity. The incorporation of the skewness
and shape parameters enables the SGN distribution to possess some attractive properties,
such as asymmetry and heavy tails, making it a widely used tool in the social and natural
sciences. The SGNdistribution exhibits excellent adaptability to a wide range of data due to
its ability to accommodate a wide range of skewness and kurtosis, while allowing for inde-
pendent adjustments of its location, scale, skewness, and shape parameters. Furthermore,
the SGN distribution includes special cases like the Laplace, the normal, and the Pareto
distributions, providing superior flexibility in modelling data with characteristics such as
leptokurtosis, skewness, and variations in tail behaviour.

In this work, several goodness of fit tests are developed based on the properties of the
SGN distribution. Specifically, we construct two classes of GOF tests for the SGN distribu-
tionwith unknownparameters. The first involves transforming the data into approximately
mixed gamma variables and applying five parametric bootstraps edf-based goodness of fit
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tests. The second is based on the inverse probability transformation and then uses sam-
ple correlation coefficients as the test statistic. We compare the five edf-based GOF tests
based on the transformed samples with five classical edf-based GOF test statistics in vari-
ous parameter settings, in terms of sizes and powers. The approximate distributions of the
above test statistics are simulated based on a parametric bootstrap procedure. We inves-
tigate their performances against different types of alternative hypotheses by using Monte
Carlo simulation. Simulation studies show that the Type I error can be well controlled for
a given nominal level for the proposed test statistics, especially for moderate to large sam-
ple sizes. The power comparisons with the five classical edf-based tests using original data
indicate that the proposed tests are very competitive candidates for the goodness of fit test
of our SGN distribution. Notably, the developed tests are generally more powerful against
symmetric alternatives than skewed alternatives.

This paper is organized as follows. In Section 2, we introduce a class of skewed gener-
alized normal distributions that encompass many common distributions as special cases.
An iterative algorithm is used to compute the maximum likelihood (ML) estimates of the
parameters of the SGN distribution. In Section 3, we apply different goodness of fit test
statistics and discuss the parametric bootstrap procedure. In Section 4, we explore the size
and power characteristics of the proposed tests against diverse alternative distributions
by simulation. In Section 5, we present a real example to illustrate the usefulness of the
proposed procedure. Finally, Section 6 provides some conclusions and discussions.

2. Skewed generalized normal distributions

Before discussing the goodness of fit tests for the SGN distribution proposed by Lian
et al. [24], we first give an overview of several types of SGN distributions. The skewed
generalized normal distributions are the most popular models in economics, finance and
related areas. The literature has introduced several SGN distributions, employing different
construction methods. For example, [25] proposed a two-piece generalized skew-normal
(GSN) distribution based on a similar extension proposed by Azzalini [26]. Its probability
density is given by

fGSN(x | μ, σ ,α,β)

=

⎧⎪⎪⎨⎪⎪⎩
2
σ
φ

(
x − μ

σ(1 + β)

)[
β

1 + β
+ (1 − β)

1 + β
�

(
α(x − μ)

σ(1 + β)

)]
, if x < μ,

2
σ
φ

(
x − μ

σ(1 − β)

)
�

(
α(x − μ)

σ(1 − β)

)
, if x ≥ μ,

where μ,α ∈ R,β ∈ [0, 1), σ > 0,φ(·) and�(·) denote, respectively, the density and dis-
tribution functions of the standard normal distribution. The GSN distribution is a mixture
of a normal distribution and a dependent discrete distribution. In the special case where
β = 0, it corresponds to the SN distribution proposed by Azzalini [27].

Bekker et al. [10] introduced a location-scale SGN distribution by applying a skewing
method to a generalized normal distribution. The SGN distribution of [10] has a density
function defined as follows:

f (x;μ,α,β , λ) = 2
α
φ∗
(
x − μ

α
;β
)
�

(√
2λ
(
x − μ

α

))
, x ∈ R,
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whereφ∗(y;β) = β
2α	(1/β) exp{−|y|β}, the location parameterμ ∈ R, scale parameterα ∈

R
+, shape parameter β ∈ R

+ and skewness parameter λ ∈ R. If μ = 0,α = √
2 and β =

2, the SGN distribution of [10] reduces to that of Azzalini’s SN. Azzalini [27].
More recently, [24] introduces a novel skewed generalized t (SGT) distribution, which

has five parameters, and the SGN distribution is a special case of the SGT distribution
when the shape parameter α approaches infinity. In this paper, we restrict our attention to
this SGN proposed by Lian et al. [24] because of its good transformation properties. As
studied in [24], the SGN distribution has a highly flexible shape, which makes it suitable
for fitting a wide range of data. The probability density function (pdf) of a random variable
X following our SGN distribution is defined as follows:

fSGN(x;μ, σ , r, b) = b
21+1/b	(1/b)σ

exp

{
− |x − μ|b
2σ b[1 + r · sign(x − μ)]b

}
, x ∈ R, (1)

with the location parameter μ ∈ R, the scale parameter σ > 0, the skewness parameter
|r| ≤ 1, the shape parameter b > 0, and 	(·) denoting the gamma function. For the SGN
variable X, we denote by X ∼ SGN(μ, σ , r, b). As shown in Figure 1, the density function
of SGN is continuous and unimodal with the mode at the centre x = μ. This unimodal
property is evident from the expression of the pdf in Equation (1). The density curve is
skewed to the left for negative values of r and skewed to the right for positive values of r.
When reversing the sign of r, the density mirrors on the opposite side of the vertical axis,
increasing skewness with the value of |r|. The shape parameter b controls the tails and peak
shapes of the density curve. Smaller values of b result in a heavier tail and sharper peak.
Density curves with extremely sharp peaks (b<1) are uncommon and are not considered
in the current study. Let X0 = (X − μ)/σ denote a standardized SGN variable, then the
cumulative distribution function (cdf) of X0 is given by

FX0(x; r, b) =

⎧⎪⎪⎨⎪⎪⎩
1 − r
2

[
1 − γ (u(x; r, b); 1/b)

	(1/b)

]
, x ≤ 0,

1 − r
2

+ 1 + r
2

· γ (u(x; r, b); 1/b)
	(1/b)

, x > 0,
(2)

where u(x; r, a, b) = |x|b/{2 [1 + r · sign(x)]b} and γ (y; a) = ∫ y
0 ta−1e−tdt denotes the

lower incomplete gamma function. It follows that FX(x;μ, σ , r, b) = FX0((x − μ)/σ ; r, b).
We first give a brief review of the stochastic representation of the SGN distribution,

which is particularly important in generating random samples and deriving its main
properties. Then, we investigate other crucial properties of our SGN distribution in this
section, which play an important role in implementing of goodness of fit tests for the SGN
distribution.

Proposition 2.1: Let X ∼ SGN(μ, σ , r, b). Then, the stochastic representation of X is
given by

X d= μ+ σ21/bWY1/b, (3)

where P(W = r + 1) = (r + 1)/2, P(W = r − 1) = (1 − r)/2, Y ∼ Ga(1/b, 1), W and
Y are independent, and Ga(a, b) denotes the gamma distribution with shape and scale
parameters a and b.
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Figure 1. Densities of the SGN distributions for different parameter values. (a) Pdf of SGN for different
values ofσ withμ = 0, r = −0.7, b = 2. (b) Pdf of SGN for different values of rwithμ = 0, σ = 1, b = 2
and Pdf of SGN for different values of bwithμ = 0, σ = 1, r = −0.7.

The kth moments of X are given by

E(Xk) =
k∑

j=0

(
k
j

)
σ jμk−jE(Xj

0), k = 1, 2, . . . (4)

where E(Xj
0) is given by

E(Xj
0) = 2j/b−1	((j + 1)/b)

	(1/b)
[
(r + 1)j+1 − (r − 1)j+1] .

In particular, the mean and variance of X are given by

E(X;μ, σ , r, b) = μ+ σ r
21/b+1	(2/b)
	(1/b)

,

Var(X; σ , r, b) = σ 222/b

	(1/b)

[
(3r2 + 1)	(3/b)− 4r2	2(2/b)

	(1/b)

]
.

The analytical expressions for the moments can be easily verified from Proposition 2.1.
Then we establish the following propositions that give two important transformations for
constructing the goodness of fit tests for SGN distribution.

Proposition 2.2: Let X ∼ SGN(μ, σ , r, b),T = |X − μ|b/σ b, then the following results
hold:

(1) As r �= 0,±1, the pdf and cdf of the random variable T are given by

fT(t; r, b) = t1/b−1

21+1/b	(1/b)

[
e
− t

2(1−r)b + e
− t

2(1+r)b

]
, t ≥ 0, (5)

and

FT(t; r, b) = 1 − r
2

· γ
(
t;
1
b
, λ1

)
+ 1 + r

2
· γ

(
t;
1
b
, λ2

)
, t ≥ 0, (6)

respectively, where λ1 = 1
2(1−r)b , λ2 = 1

2(1+r)b and γ (x;α, λ) = λα

	(α)

∫ x
0 tα−1e−λtdt

denotes the lower incomplete gamma function;
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(2) As r = 0, we have T ∼ Ga(1/b, 2);
(3) As r = ±1, we have T ∼ Ga(1/b, 21+1/b).

Proof: See Appendix A.1. �

Proposition 2.3: Let X ∼ SGN(μ, σ , r, b),Y = (X − μ)/σ . Then Y ∼ SGN(0, 1, r, b) and
the inverse cdf of Y can be given by

F−1
Y (u; r, b) =

⎧⎪⎨⎪⎩−(1 − r) ·
[
2γ−1

(
1 − 2u

1−r ;
1
b , 1

)]1/b
, u ≤ 1−r

2

(1 + r) ·
[
2γ−1

(
2

1+r (u − 1−r
2 );

1
b , 1

)]1/b
, u > 1−r

2 ,
(7)

where γ−1(·; p, q) is the inverse of the lower incomplete gamma function defined in Proposi-
tion 2.2.

Proof: This result can be obtained by straightforward algebraic manipulations based on
Equation (2). �

2.1. Maximum likelihood estimation for the SGN distribution

To obtain the test statistics, we first need to estimate the unknown parameters. To solve
the ML estimator of the parameter of the SGN distribution, we propose a new iterative
algorithm to maximize the likelihood function. This algorithm overcomes the difficulty of
directly solving the estimation equations.

Let F = {FX(·; θ) : θ ∈ �} be the set of the distribution functions for univariate SGN,
where θ = (μ, σ , r, b)	 denotes the parameter vector. Let Xn = {X1, . . . ,Xn} be an inde-
pendent and identically distributed (i.i.d.) random sample drawn fromamember ofF with
the parameter θ . Thus, the log-likelihood function of θ , given the observed data Xn, is

�(θ |Xn) =
n∑

i=1

{
ln b − (1 + 1/b) ln 2 − ln	 (1/b)− ln σ

− |Xi − μ|b
2σ b[1 + r · sign(Xi − μ)]b

}
. (8)

When θ is unknown, we use the ML method. However, due to the complexity of
Equation (8), which contains non-differentiable and nonlinear functions like sign(·) and
ψ(·), it is difficult to obtain theML estimate using traditional optimization techniques rely-
ing on derivatives. In order tomaximize the log-likelihood �(θ |Xn), we take the derivatives
of this log-likelihood function with respect to the parameters μ, σ , r and b at the (h + 1)
iteration step. To ensure fast convergence of the algorithm, we utilize different numerical
optimization methods to update θ̂

(h+1). This iterative algorithm follows these steps:
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By setting the derivative of the the log-likelihood �(θ |Xn) with respect to μ to zero at
the (h + 1) iteration step, we have

n∑
i=1

sign (Xi − μ) |Xi − μ|b−1[
1 + r · sign (Xi − μ)

]b = 0. (9)

Let ρ(y) = sign(y)|y|b−1

[1+r·sign(y)]b , the estimate of μ can be defined by an implicit equation:∑n
i=1 ρ(Xi − μ) = 0. According to the method proposed in [28,29], a numerical solution

of μ is given as a weighted mean:

μ =
∑n

i=1 wiXi∑n
i=1 wi

, where wi = ρ(Xi − μ)

Xi − μ
. (10)

We apply (10), and the solution of Equation (9) yields the solution of μ at the (h + 1) step:

μ̂(h+1) =
∑n

i=1 wi(Xi; μ̂(h), σ̂ (h), r̂(h), b̂(h))Xi∑n
j=1 wj(xj; μ̂(h), σ̂ (h), r̂(h), b̂(h))

, (11)

where wi(Xi;μ, σ , r, b) = |Xi−μ|b−2

[1+r·sign(Xi−μ)]b .
We consider the derivative of Equation (8) with the scale parameter σ at the (h + 1)

iteration step as follows

2nσ b

b
−

n∑
i=1

|Xi − μ|b[
1 + r · sign (Xi − μ)

]b = 0. (12)

Fixing μ = μ̂(h+1), we update σ̂ (h+1) by the following closed-form expression

σ̂ (h+1) =
{
b̂(h)

2n

n∑
i=1

wi

(
Xi; μ̂(h+1), σ̂ (h), r̂(h), b̂(h)

) (
Xi − μ̂(h+1)

)2} 1
b̂(h)

. (13)

Similarly, setting ∂�(θ |Xn)/∂r to zero, we have

n∑
i=1

sign (Xi − μ) |Xi − μ|b[
1 + r · sign (Xi − μ)

]b+1 = 0. (14)

Fix μ = μ̂(h+1) and σ = σ̂ (h+1), and update r̂(h+1) as the solution of Equation (14)

r̂(h+1) = 1 − 2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎣
∑n

i=1 γi1(Xi; μ̂(h+1))
([
Xi − μ̂(h+1)]+)b̂(h)

∑n
i=1 γi2(Xi; μ̂(h+1))

([
μ̂(h+1) − Xi

]+)b̂(h)
⎤⎥⎥⎦

1
b̂(h)+1

+ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
−1

, (15)

where γi1(Xi;μ) = I(Xi ≥ μ), γi2(Xi;μ) = 1 − γi1(Xi;μ) = I(Xi < μ) and [x]+ =
max{x, 0}.
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Next, we update the estimate of the shape parameter b. This involves fixing the values
of μ, σ , r to the values of (h + 1)th step, and updating the estimate of b using the Newton-
Raphson method ([30,31]). Each iteration requires the first and second derivatives of the
objective function �(θ |Xn) with respect to the parameter b

b̂(h+1) = b̂(h) − ∂�(θ |Xn)

∂b

(
∂2�(θ |Xn)

∂b2

)−1
∣∣∣∣∣
b=b̂(h)

. (16)

In Equation (16), ∂�(θ |Xn)
∂b and ∂2�(θ |Xn)

∂b2 are given by

∂�(θ |Xn)

∂b
= n

[
1
b

+ ln 2
b2

+ ψ
( 1
b
)

b2

]
− 1

2

n∑
i=1

[
h
(
Xi; θ̂

∗(h))]b ln h (Xi; θ̂
∗(h)) ,

∂2�(θ |Xn)

∂b2
= −n

[
1
b2

+ 2 ln 2
b3

+ 2
b3
ψ

(
1
b

)
+ 1

b4
ψ ′
(
1
b

)]

− 1
2

n∑
i=1

{[
h
(
Xi; θ̂

∗(h))]b [ln h (Xi; θ̂
∗(h))]2} , (17)

where θ̂
∗(h) = (μ̂(h+1), σ̂ (h+1), r̂(h+1), b)	, h(Xi; θ) = |Xi−μ|

σ [1+r·sign(Xi−μ)] ,ψ(·) = 	′(·)/	(·)
and ψ ′(·) denote the digamma and trigamma functions, respectively.

The algorithm iterates until some suitable convergence criteria are satisfied. In this
paper, the algorithm is terminated when the relative change in the log-likelihood
function defined in Equation (8) is less than the per-specified tolerance 10−7, i.e.
|�(̂θ (h+1)|Xn)/�(̂θ

(h)|Xn)− 1| < 10−7 ([32]). This iterative process ensures that the esti-
mated parameter progressively converge towards the maximum likelihood estimate. Each
parameter update method is selected based on its effectiveness in maximizing the likeli-
hood equations, leading to an efficient and reliable iterative algorithm.

This algorithm is summarized in Algorithm 1.

Algorithm 1: A new algorithm for solving the ML estimator of the SGN
distribution.
Input :

A sample Xn;

An initial estimator θ̂
(0) = (μ̂(0), σ̂ (0), r̂(0), b̂(0))	;

Output:
θ̂MLE;

1 Set h = 0; repeat
2 Update the location parameter μ̂(h+1) by using (11);
3 Update the scale parameter σ̂ (h+1) by using (13);
4 Update the skewness parameter r̂(h+1) by using (15);
5 Update the shape parameter b̂(h+1) by using (16).

6 until |�(̂θ (h+1)|Xn)/�(̂θ
(h)|Xn)− 1| < 10−7;
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Initialization:
It is well known that a suitable initial value can accelerate the convergence of the opti-

mization algorithm. Note that μ is the mode of the SGN distribution. Thus, a robust
estimator μ̂(0) can be obtained using the half range mode (HRM) method [33]. The HRM
estimator is available through the half .range.mode function in the genefilter package or
the hrm function in the modeest package in R software. For a detailed description of the
algorithm, please refer to [24]. In our study, we use the following formulas to determine
the initial values for μ̂(0), σ̂ (0) and r̂(0)

μ̂(0) = mode(Xn), σ̂ (0) =
√∑n

i=1(Xi − μ̂(0))2

n
, r̂(0) = 1 − 2

∑n
i=1 I(Xi ≤ μ)

n
.

(18)

In symmetric or slightly skewed data situations, the sample mean and sample median can
also offer a reasonable estimate for the location parameter μ. To determine the initial
value b̂(0):

(1) Start by selecting a suitable interval for the shape parameter b. Generate a series of
b values within this interval with appropriate spacing and denote the qth element
of the vector as b̂(0)q (q = 1, 2, . . .).

(2) Calculate the values of the likelihood function, defined by Equation (8), for each
θ̂ (q) = (μ̂(0), σ̂ (0), r̂(0), b̂(0)q )	.

(3) The initial value of b is chosen as b̂(0)q which corresponds to the maximum value of
the likelihood function.

Finally, we recommend trying multiple starting points and comparing their log-
likelihood values in order to identify the true ML estimates as suggested in [34].

2.2. Consistency of theML estimators and the convergence of the algorithm

In this subsection, we establish consistency of the ML estimates of all parameters of the
SGN distribution and analyse the convergence of the ML algorithm. Theorem 2.1 estab-
lishes the consistency of the ML estimates for all parameters of the SGN distribution. The
proof follows the framework for proving the consistency of ML estimates of unimodal
densities proposed by Reiss [35] and Bryant and Williamson [36].

Theorem 2.1: Let Xn = {X1,X2, . . . ,Xn} be an i.i.d. random sample from a member of F
with a parameter θ ∈ � = {(μ, σ , r, b) : μ ∈ R, σ ∈ R

+, r ∈ (−1, 1), b > 1 and 1/b ∈ I},
where I denotes any bounded closed interval away from 0. If θ = θ0 = (μ0, σ0, r0, b0)	, the
ML estimator θ̂MLE for the SGN distribution is strongly consistent in the sense

P
(
lim
n→∞ ‖̂θMLE − θ0‖ = 0

)
= 1, (19)

where ‖ • ‖ denotes Eucidian distance between the two sets D1,D2, which is given by

‖D1 − D2‖ = inf
d1i∈D1

inf
d2i∈D2

‖d1i − d2i‖.
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Proof: See Appendix A.2. �

Wenow investigate the convergence of the Algorithm 1. The closed-form expression for
the Fisher information matrix I(θ) for the ML estimates of the SGN parameters are given
in Theorem 2.2. The proof and further details are provided in the Appendix A.3.

Theorem 2.2: Let � = {(μ, σ , r, b) : μ ∈ R, σ ∈ R
+, r ∈ (−1, 1), b > 1 and 1/b ∈ I},

where I is defined in Theorem 2.1. The elements of the Fisher information matrix, denoted
by Iij, are

Iij = −E
[
∂2�(θ |Xn)

∂θi∂θj

]
, i, j = 1, 2, 3, 4, (20)

where Iij = Iji and θj represents the jth element of the parameter vector θ = (μ, σ , r, b)	.
Then, we have

I =

⎛⎜⎜⎝
I11 0 I13 0
0 I22 0 I24
I13 0 I33 0
0 I24 0 I44

⎞⎟⎟⎠ , (21)

where the corresponding components of Equation (21) are listed in Appendix A.3.

Proof: See Appendix A.3. �

Numerical computations confirm the positive definiteness of the information matrix
within the parameter space �. Thus, the proposed algorithm in Section 2.1 is convergent
in the parameter space�.

3. Goodness of fit test

Let Zn = {Z1,Z2, . . . ,Zn} be a random sample with distribution function F0, with support
in R and finite mean. We are interested in testing the composite null hypothesis

H0 : F0 ∈ F versus H1 : F0 /∈ F , (22)

where F is the SGN distribution functions with unknown parameter θ ∈ R4.

3.1. Traditional edf-based goodness of fit tests

In this subsection, we will apply five traditional edf-based goodness of fit test statistics. We
first estimate the parameter under the null hypothesis H0 using the maximum likelihood
method; see Section 2.1. In the very unlikely situation that one or more parameters are
known, some adjustments may need to be made to the following methods. Let

Fn(z) = 1
n

n∑
i=1

I (Zi ≤ z)

denotes the empirical distribution function of the random sample evaluated at x, where
I denotes the indicator function, and FZ(·; θ̂) denotes the cdf of the best-fitted model in
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F , where θ̂ is the ML estimate of θ . In parametric edf-based goodness of fit testing, test
statistics are used to measure the discrepancy between Fn(z) and FZ(·; θ̂).

D’Agostino [37] and Zamanzade [38] provided a complete and detailed review on edf-
based GOF tests. As introduced by Pewsey [23] and Cabras and Castellanos [39], the
edf-based test statistics considered in this work are the Kolmogorov-Smirnov (D), the
Kuiper (V ), the Cramer-von Mises (W2), the Watson (U2) and the Anderson-Darling
(A2) statistics. It should be noted thatA2 statistic introduces a different weighting function
to the distance |Fn(z)− FZ(·; θ̂)| compared to D, and can therefore be seen as a modifica-
tion of D. In fact, A2 gives a higher weight to the lower and upper parts of the underlying
distribution [40,41].

Let D+ = maxi{ i
n − Û(i)}, D− = maxi{Û(i) − i−1

n }, then the corresponding sample
versions are given as follows:

D∗ = max
(
D+,D−) , V∗ = D+ + D−, (23)

W2∗ = 1
12n

+
n∑

i=1

(
Û(i) − 2i − 1

2n

)2
, (24)

U2∗ = W2∗ − n(Û − 1/2)2, (25)

A2∗ = −n − 1
n

n∑
i=1
(2i − 1)

[
ln Û(i) + ln

(
1 − Û(n+1−i)

)]
, (26)

where Ûi = FZ(Zi; θ̂), i = 1, . . . , ndenote the pseudouniformvariates distributed on [0, 1],
Û(1) ≤ Û(2) ≤ · · · ≤ Û(n) denote their ordered statistics, ¯̂U = ∑n

i=1 Ûi/n, and Zi, i =
1, . . . , n are the given data points. If FZ(·; θ̂) provides a close approximation to the true
distribution F0, then Ûi will be asymptotically uniformly distributed on the interval [0, 1].
Formulas (23)–(26) indicate that all five test statistics are designed to detect departures of
Ûi from uniformity on [0, 1]. Therefore, for each statistic, we reject the null hypothesis if
the value of the statistic is larger than the 100(1 − α)% quantile of the corresponding null
distribution. It should be noted that the values of the above test statistics are unaffected if
the data are first standardized.

The limiting null distributions of edf-based GOF test statistics are usually untractable
since the distribution theories depend on various factors, such as the distribution being
tested, the method of estimation, the values of parameter estimates, and the sample size.
To apply the goodness of fit tests in practice, we use the following parametric bootstrap
to approximate the null distributions of the test statistics when all parameters of the SGN
distribution are assumed to be unknown.

Let T denote one of the five test statistics defined in formulas (23)–(26). Then the
bootstrap algorithm for testing hypothesis (22) can be given as follows:

(1) Given the sample Zn = {Z1,Z2, . . . ,Zn},
(a) (a)Calculate the ML estimate θ̂ .
(b) (b)Evaluate T = T (Zn; θ̂). Denote the value obtained by T0.

(2) Generate B bootstrap samples from FSGN(·; θ̂), denoted as Z∗
j = {Z∗

1j,Z
∗
2j, . . . ,Z

∗
nj},

j = 1, 2, . . . ,B.
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(3) For the jth bootstrap sample, Z∗
j , j = 1, 2, . . . ,B:

(a) (a)Calculate the ML estimate θ̂
∗
j , and hence identify FSGN(·; θ̂∗

j ).
(b) (b)Calculate the value of the bootstrap test statistic T ∗

j = T (Z∗
j ; θ̂

∗
j ).

(4) The p value of the test is estimated by

p̂ =
#
{
1 ≤ j ≤ B : T ∗

j ≥ T0
}

B
. (27)

3.2. A novel goodness of fit test based on themixed gamma transform

The test procedure developed in this subsection is based on Proposition 2.2. Let

|Z − μ|b/σ b = T, (28)

where Z ∼ SGN(μ, σ , r, b), then we have

T ∼ 1 − r
2
	

(
1
b
, λ1

)
+ 1 + r

2
	

(
1
b
, λ2

)
,

where λ1 and λ2 are defined in Proposition 2.2. Under H0, the transformed data: Ti, i =
1, . . . , n are asymptotically independent samples distributed with mixed gamma dis-
tributions. A consistent estimator for P(T ≤ x) is the empirical distribution function
given as

FTn (t) =

⎧⎪⎨⎪⎩
0, t < t(1),
i/n, t(i) ≤ t < t(i+1),
1, t(n) < t,

where t(1) ≤ · · · ≤ t(n) are the ordered statistics of the ti′s, then

FT (t; r, b) ≈ FTn (t). (29)

Under the null hypothesis stated in (22), Equation (29) is expected to hold. If we have a
consistent estimator θ̂ for parameter θ , the relationship in formula (29) is still expected
to hold. To perform the test procedures, we need to first estimate the four parameters. To
obtain μ̂, σ̂ , r̂ and â, we use the maximum likelihood method on the sample Z1, . . . ,Zn
from SGN(μ, σ , r, b). The values of t1, . . . , tn can be calculated using Equation (28). The
proposed approach is to transform the original random sample Z1, . . . ,Zn into an approx-
imately mixed gamma sample T1, . . . ,Tn, and then test the hypothesis H′

0 : T1, . . . ,Tn ∼
1−r
2 	(

1
b , λ1)+ 1+r

2 	(
1
b , λ2) using the five edf-based GOF tests discussed in Section 3.1.

The test procedure is summarized as follows:

(1) Given the sample Z1, . . . ,Zn from the SGN distribution,
(a) (a)Compute the ML estimates θ̂ = (μ̂, σ̂ , r̂, b̂)	; see the discussion in

Section 2.1;
(b) (b)Transform using

Ti = |Zi − μ̂|b̂
σ̂ b̂

, i = 1, . . . , n;
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(c) (c)Use {Ti}ni=1 as input to the test procedures stated in Section 3.1, and substitute
Ti for Zi, i = 1, . . . , n. Calculate five test statistics, denoted byD,V ,W2,U2 and
A2, respectively.

(2) Generate B bootstrap samples from FSGN(·; θ̂), denoted as Z∗
j = {Z∗

1j,Z
∗
2j, . . . ,Z

∗
nj},

j = 1, 2, . . . ,B.
(3) Let S denote one of the five test statistics, D,V ,W2, U2 and A2, and S0 denote the

value of S . For the jth bootstrap sample, Z∗
j , j = 1, 2, . . . ,B:

(a) (a)Calculate the ML estimate θ̂
∗
j = (μ̂∗

j , σ̂
∗
j , r̂

∗
j , b̂

∗
j )

	, and hence identify FSGN
(·; θ̂∗

j ).
(b) (b)Transform using

T∗
ij = |Z∗

ij − μ̂∗
j |b̂

∗
j

(σ̂ ∗
j )

b̂∗
j

, i = 1, . . . , n;

(c) (c)Calculate the value of the bootstrap test statisticS∗
j = S(T∗

j ; θ̂
∗
j ), whereT∗

j =
{T∗

1j,T
∗
2j, . . . ,T

∗
nj}.

(4) The p value of the test is estimated by

p̂ =
#
{
1 ≤ j ≤ B : S∗

j ≥ S0

}
B

. (30)

3.3. Goodness of fit test based on the sample correlation coefficient

The test procedure developed in this subsection is based on Proposition 2.3, which can be
conducted as follows. Let Z ∼ SGN(μ, σ , r, b) with given μ and σ , then Z has a location
and scale distribution,

P(Z ≤ z) = FY
(
z − μ

σ
; r, b

)
, (31)

where FY(·; r, b) is the distribution function of Y ∼ SGN(0, 1, r, b), and it is given by
Equation (2). Given the sample Z1, . . . ,Zn, the empirical distribution function Fn(z) is
a consistent estimator of P(Z ≤ z), then

FY
(
Zi − μ

σ
; r, b

)
≈ Fn(Zi),

therefore

Vi := F−1
Y (Fn(Zi); r, b) ≈ Zi − μ

σ
. (32)

We note that if Z has the SGN distribution, there is a strong linear relationship between the
variables V = F−1

Y (Fn(Z); r, b) and Z under H0. Based on this relation, we develop a GOF
test for the SGN distribution with unknown parameters. It is worth noting that this linear
relationship no longer holds for samples transformed in Section 3.2.
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We define the sample correlation coefficient between Vi and Zi,

rn =
∑n

i=1
(
Zi − X̄

) (
Vi − V̄

)√∑n
i=1

(
Zi − X̄

)2∑n
i=1

(
Vi − V̄

)2 , (33)

as an estimator of the linear correlation between V and X. In practice, the critical values of
the test can be approximated using B replicates of its bootstrap version ([42]). Bootstrap
methods avoid the need for constructing and using tables of critical values. If μ, σ , r and
b are estimated by a consistent estimator, say μ̂, σ̂ , r̂ and b̂, then it is expected that the
linear relationship (32) still holds and a high value (approaching 1) of the rn statistic will
be observed. Notice that if the random sample comes from a distribution different from
the SGN distribution, the formula (32) will not hold. We reject the null hypothesis H0 at
the level of significance α if rn ≤ Cn(α), where the critical value Cn(α) satisfies

α = P
(
Reject H0 | H0

) = P (rn ≤ Cn(α)) .

We use the following procedure to determine the critical values of rn:

(1) Given a sample Zn = {Z1,Z2, . . . ,Zn} from SGN(μ, σ , r, b):
(a) (a)Calculate themaximum likelihood estimator of the unknown parameter,

denoted by θ̂ = (μ̂, σ̂ , r̂, b̂)	.
(b) (b)Sort Zi’s into ascending order: Z(1) ≤ · · · ≤ Z(n).
(c) (c)Calculate v(i) = F−1

Y (Fn(Z(i)); r̂, b̂), i = 1, . . . , n, where F−1
Y (·; r̂, b̂) is the

quantile function given in formula (7).
(d) (d)Evaluate rn by substituting Z(i), v(i) generated in steps (b) and (c) into

formula (33), denoted by rn0.
(2) Generate B bootstrap samples from FSGN(·; μ̂, σ̂ , r̂, b̂), denoted by {Z∗

j =
{Z∗

1j,Z
∗
2j, . . . ,Z

∗
nj}, j = 1, 2, . . . ,B}.

(3) For the jth bootstrap sample, Z∗
j , j = 1, 2, . . . ,B, recalculate the ML estimate θ̂

∗
j .

Calculate the values of rn, replacing Zi by Z∗
ij and θ̂ by θ̂

∗
j , denoted by r∗nj, j =

1, . . . ,B.
(4) RejectH0 if rn0 ≤ qα , where qα denotes the 100α% sample quantile of the r∗nj values

obtained in step 3.

It is relatively simple to find the critical values of rn using the above procedures. Figure 2
presents graphs of the critical values for the rn-based test as a function of r and b at sig-
nificance levels α = {0.01, 0.025, 0.05, 0.1}, using a bootstrap procedure with B = 10,000
Monte Carlo samples with sample size n = 50. It can be seen that the critical values
of rn become larger as the shape parameter b increases, indicating a tendency to reject
the hypothesis that the data are from the SGN distribution. The critical values curve in
Figure 2(a) is approximately symmetric about r = 0 when r is not around zero. Figure 2
shows that the distribution of the test statistic rn under H0 depends on the unknown
parameters r and b.
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Figure 2. Critical values of rn as a function of skewness parameter r, and shape parameter b, obtained
using parametric bootstrap whenF is the SGN class. (a) Critical values of rn as a function of r. Samples
are generated from SGN distribution with μ = 3, σ = 2 and b = 1.5 and (b) Critical values of rn as a
function of b. Samples are generated from SGN distribution withμ = 3, σ = 2 and r = −0.5.

4. Simulation studies

In this section, we explore the finite sample performance of the proposed tests in different
settings by simulations. Two pervasive features of any statistical test of interest are its rejec-
tion rate whenH0 is correct, i.e. the size, and whenH0 is false, i.e. the power. An attractive
test is one whose size is sufficiently close to the nominal significance level and has high
power.

The SGN distribution has four parameters, and in general, the values of all parameters
are unknown. As discussed in Section 2.1, we can employ the iterative algorithm to obtain
the maximum likelihood estimates. We then conducted five edf-based tests mentioned in
Section 3.2 using the transformed sample, along with the test based on the sample correla-
tion coefficient discussed in Section 3.3. We denote the resulting tests as D, V,W2, U2, A2

and rn, respectively. For comparative purposes, we also consider the standard test proce-
dures in Section 3.1 based on the original sample, denoted asD∗,V∗,W2∗,U2∗ andA2∗. In
our study, we estimate the empirical sizes of the 11 tests at significance levels α = 0.01, 0.05
and 0.10, with varying sample sizes n = 20, 50, 100, 200 and 500. Naturally, we expect that
the proposed parametric bootstrap edf-based GOF tests, as described in Section 3, would
effectively maintain the nominal significance level for small, medium, and large sample
sizes. To examine the power of the proposed GOF tests, a Monte Carlo experiment was
designed by varying the alternative distributions. By simulation, we explain the reliability
of distinguishing between competingmodels solely based on the observed data in practice.
In addition, we investigate the sensitivity of these tests to parameter estimates. For details,
please refer to Appendix 2.

4.1. Size of the tests

In order to investigate the ability of the proposed test procedures to maintain a nominal
significance level of 5%, we estimated the test sizes using 1000 pseudo-random samples of
size n from the SGN distribution. We varied the skewness and shape parameters (r and
b) of the SGN distribution while keeping μ = 3 and σ = 2. Specifically, we set r values



16 C. LIAN ET AL.

as 0,−0.2 and −0.7, denoting symmetric, slightly skewed to the left, and highly skewed
to the left distributions, respectively. Additionally, we set the shape parameter b as 1.5,
2, and 2.5, representing distributions ranging from steep to flat in shape. Following the
works of [23,42], for each (n, r, b) combination, we first generated 1000 samples of size n.
For each sample, we simulated B = 500 parametric bootstrap samples of size n from the
SGN distribution fitted to it using the maximum likelihood method. Then we applied the
test procedures outlined in Section 3 at nominal significance levels of α. All computations
were performed in the R program, utilizing the built-in ′uniroot′ routine for the maximum
likelihood estimation.

Figure 3 shows the empirical sizes of the test statistics considered in this study for dif-
ferent sample sizes n under the nominal significance level of 5%. In each panel of Figure 3,
the dashed horizontal line represents the limits of 0.05 ± 1.96

√
0.05(1 − 0.05)/1000 aris-

ing from normal approximation. To approximate the distributions of the test statistics, we
employed a parametric bootstrap procedure described in Section 3 with B = 500 repli-
cates. The results at significance levels of α = 0.1 and 0.01 are given in Tables A8 and A9
in Appendix 2. Those lying outside the 95% confidence limits of α ± 1.96

√
α(1 − α)/1000

have beenmarked as bold (below the lower limit) or as italic (above the upper limit). From
Figure 3, it can be observed that most of the empirical size values that fall outside the limits
are below the lower limit of such interval, indicating that the tests tend to be conservative in
the corresponding scenarios. Additionally, the empirical sizes for α = 10% and 1% exhibit
similar trends, those for the 10% (1%) level being slightly more (less) conservative.

From Figure 3, we can observe that the tests based on the transformed sample, namely
D, V, W2, U2,A2 and rn, can maintain the nominal significance level for most parameter
combinations in large sample size n = 200, 500. Additionally, for small n = 20, 50, 100,
the empirical sizes of the D,V ,W2, U2, and A2 tests are closer to the nominal significance
levels, whilst the remaining tests tend to be conservative. In summary, the five statistics
based on the transformed sample, i.e. D,A2, W2, U2 and V outperform the other tests in
general, especially for small tomedium-sized samples. Notably, Figure 3 shows thatD∗,V∗,
W2∗, U2∗, A2∗ and rn tests are still conservative for n = 500 when r = 0 and b = 2.5, cor-
responding to the symmetric distributions with flatter peaks and thinner tails compared
to the normal one. The general conclusion is that the V and U2-based tests are the most
effective in maintaining the nominal significance level in most cases.

More conservative test results were observed for r = 0,−0.2 compared to r = −0.7.
Figure 3 illustrates that for r = −0.7, a smaller sample size is required to maintain a 5%
nominal level compared to r = −0.2, 0. Among the three values of r considered, the five
standard tests based on the original data, i.e. D∗,V∗, W2∗, U2∗, A2∗ appear to be the
most conservative for the symmetric case (r = 0). However, it seems that the shape of the
assumed distribution has little effect on the size. Globally, simulation results indicate that
our proposed test procedure based on the approximately mixed gamma sample maintains
the nominal significance level better than the standard tests based on the original data.
Additionally, the rn-based test tends to be conservative.

4.2. Power of the tests

In this subsection, we conduct a simulation study to investigate the power of the eleven
GOF tests discussed in Section 3 under various alternative distributions. Specifically, we
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Figure 3. Empirical sizes of the GOF tests based on theD(◦), V(�),W2(+),U2(�), A2(•), rn(�),D∗(◦),
V∗(�), W2∗(+), U2∗(�) and A2∗(•) statistics when F is the SGN class and the nominal significance
level is 5%. The left column of each subplot displays D, V, W2, U2, A2 and rn, while the right column
displays D∗, V∗, W2∗, U2∗ and A2∗. (a) r = −0.7, b = 1.5. (b) r = −0.2, b = 1.5. (c) r = 0, b = 1.5. (d)
r = −0.7, b = 2. (e) r = −0.2, b = 2. (f ) r = 0, b = 2. (g) r = −0.7, b = 2.5. (h) r = −0.2, b = 2.5 and
(i) r = 0, b = 2.5.
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analyse the rejection rates of the proposed tests against the 12 alternatives when the under-
lying distribution is assumed to be the SGN at a 5% significance level. These alternative
distributions cover symmetric and asymmetric, unimodal and bimodal, leptokurtic and
platykurtic, heavy-tailed and light-tailed densities. This allowed us to capture various pos-
sible data behaviours in practical situations. Simulations were carried out with a number
of N = 1000 Monte Carlo samples of size n, using the ML method to estimate the null
distribution.

We designed a simulation experiment to test the assumption of a SGNdistributionwhen
the data was in fact drawn from various alternative distributions. In this paper, we con-
sider a general composite hypothesis given in (22) in ten cases. The simulated powers were
estimated as follows:

(i) Generate Zn from the alternative distribution;
(ii) Implement the tests given in Section 3 and record whether the test statistics reject

the null hypothesis at the given significance level;
(iii) Repeat steps (i) and (ii) N times, and the power estimate was calculated as the

percentage of rejected null hypotheses.

The simulated powers of the eleven tests are reported in Tables A1–A5.
In the tables, the alternative distributions are labelled as follows: logistic (L), Student (tn)

Cauchy (C),Weibull (W), Gumbel (G), skew-normal (SN ), a mixture of normal (MixN ),
gamma (Ga) and chi-squared (χ2), with the parameter value following in the parenthesis.
For instance, χ2(9) stands for the chi-squared distribution with the parameter equal to 9.
Models 1–3 are symmetrical distributions with a flat peak, sharp peak, and extremely sharp
peak, respectively. Models 4–6 are asymmetrical, leptokurtic, or platykurtic distributions,
corresponding to heavy, canonical, and light tails, respectively. Model 6 is a four-parameter
location-scale extension of the Azzalini-typeSN distribution, with parameter vector θ1 =
(ξ ,ω, κ , τ)	. Its density function at x is

fSN (x) = 1
ω
φ

(
x − ξ

ω

)
exp

{
�

(
τ
√
1 + κ2 + κ

x − ξ

ω

)
−�(τ)

}
, x ∈ R,

where κ is a shape parameter, and φ and � denote the standard normal density and dis-
tribution functions, respectively. The samples can be generated using the sn library of the
R package. We set ξ = 3,ω = 2 for the sake of clarity. Although SN distributions can
be highly skewed, they can not exhibit bimodality like the mixture models. Thus, we have
adopted the two-component normal mixture as alternative distributions in models 10-12.
The data are generated from the following three models:

Model 10. x ∼ 0.7N(−1, 2)+ 0.3N(4, 2),
Model 11. x ∼ 0.7N(2, 2)+ 0.3N(−1, 1),
Model 12. x ∼ 0.7N(3, 2)+ 0.3N(−3, 1).

Model 10 is a two-component normalmixture with equal variance, whileModels 11 and
12 are two-component normal mixtures with unequal variance. Furthermore, we compare
the tests against gamma alternatives with different parameters (seemodels 7–9). Notably, as
the shape parameter ν1 decreases, the gamma distribution becomes more skewed around
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Figure 4. Empirical power, as a function of sample size, n, of parametric bootstrap goodness of fit tests
when F is the SGN class. (a) Model 1. (b) Model 2. (c) Model 3. (d) Model 4. (e) Model 5. (f ) Model 6. (g)
Model 7. (h)Model 8. (i)Model 9. (j)Model 10. (k)Model 11 and (l)Model 12.

zero with lighter tails. Models 7–9 include three gamma distributions, corresponding to
lighter, canonical, and heavier tails than logistic.

Firstly, we simulated n observations from each alternative model and estimated the
unknown parameter under the SGN null hypothesis using the ML algorithm. Then, we
calculated all test statistics: D, V, W2, U2, A2, D∗,V∗, W2∗, U2∗, A2∗ and rn. The results
are shown in Tables A1–A5. For each case, the best test is highlighted in boldface. It can be
observed that, in general, tests based on the transformed sample perform better than the
standard tests. Thus, power curves of D, V, W2, U2, A2, and rn tests as functions of n for
different designs are plotted in Figure 4 for n = 20, 50, 100, 200 and 500. Figure 4 shows
that the power of all the tests increases and approaches one with increasing sample size n,
indicating that the tests based on the six statistics will be consistent.
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Tables A1–A5 reveal the following findings. In the case of logistic and t4 alternatives,W2

is the most powerful test, whileU2 andA2 have comparable powers, and the other tests are
less powerful. In the case of Cauchy and Weibull alternatives, rn appears to be the most
powerful for all n, and D,V , W2, U2, A2 have comparable powers. However, in the case
of the Gumbel alternative, rn performs worst overall, and the best-performing test isW2-
based test for small sample sizes n = 20, 50. For theSN alternative, themost powerful test
isA2, whileD,V,W2,U2 have comparable powers. For both Gumbel andSN alternatives,
none of the five tests based on the transformed sample consistently outperform any of the
others for all n. In the case of gamma alternatives, rn gives the best performance under large
sample size n forGa(3, 0.8) alternative, whileA2 performs best inmost cases.We compared
the power performance for models 5, 6 (with infinite support) and models 4, 7, 8, 9 (with
positive support) in Tables A3 andA4. The results suggest that, for skewed alternatives with
infinite support, the powers are higher than those for alternatives with positive support, but
this trend is observed only for sample sizes of 100 and 200. Additionally, for alternatives
with infinite support or positive support, none of the tests consistently performed better.

An interesting conclusion is that, for χ2(9) alternative, the five standard tests based on
the original data, i.e. D∗,V∗,W2∗, U2∗ and A2∗ perform better for smaller n. However, as
n increases, the proposed tests based on the transformed sample outperform the five stan-
dard tests. Similarly, for the bimodal alternative models, the powers of the five standard
tests, D∗,V∗,W2∗, U2∗, and A2∗, are slightly higher than the five tests based on the trans-
formation for models 10 and 12. However, as n increases, the difference in power between
them decreases. The above results indicate that the ability of the proposed tests to discrim-
inate whether small samples are drawn from a bimodal distribution is relatively limited,
but this limitation can be mitigated by increasing sample size n. In addition, the rn statistic
emerges as the most powerful test for model 11 and model 12 under large sample sizes
n = 200 and 500. In general, theW2 and A2-based tests perform the best in most cases.

Moreover, simulation results in tables also indicate that the tests are generallymore pow-
erful against symmetric alternatives than skewed models. This can be attributed to the
different shapes of the SGN and symmetric distributions. Comparing models 4 and 9 with
other asymmetric alternatives when n ≤ 50, we observe that the powers of the tests are
generally lowest against very heavy-tailed alternatives. In conclusion, for samples of small
ormoderate sizes from alternative distributions whose shapes are very different from those
that SGN distributions can assume, the tests can be very powerful.

5. Data example: australian institute of sport data

As an illustrative example, we will analyse the Australian Institute of Sport (AIS) data,
which consists of several biomedicalmeasurements on 102male and 100 female Australian
athletes ([43]). The complete dataset is available as the ais data object in R’s sn package.
Recently, [23] emphasized the significance of conducting goodness of fit tests in analysing
the AIS data set using the sinh-arcsinh distributions. Additionally, [44,45] illustrated the
performance of the proposed bivariate skew-normal distribution for some variables by
using the AIS dataset. In this study, we focus on two variables: the weight (WT) (in kg) and
body mass index (BMI) for male and female athletes. Table A6 summarizes the descriptive
statistics. It can be seen that all variables exhibit varying degrees of skewness. In compar-
ison to the WT variable, the BMI variable shows higher skewness and kurtosis. Table A7



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 21

Figure 5. Histograms of the AIS dataset with an overlaid SGN fit and nonparametric kernel density
estimation. (a) Weight on female; (b) Weight on male; (c) BMI on female; (d) BMI on male.

shows the p-values of all tests conducted on female and male athletes separately. These
estimated p-values are estimated using the parametric bootstrap method with B = 1000
bootstrap samples. The lowest p-value for each variable is highlighted in bold. For the two
variables of female and male athletes, all tests lead to the same conclusion in favor of the
SGN distribution at any significance level below 12.3%.

To further investigate the distributional characteristics of the data, we conduct a detailed
model analysis. The fitting results for the AIS dataset using the SGN distribution, obtained
through the ML algorithm detailed in Section 2.1, are summarized in Table A7. The esti-
mates of r in Table A7 support the presence of skewness in the underlying distribution of
each variable. Figure 5 shows the histograms of the AIS dataset with an overlaid SGN fit
and nonparametric kernel density estimation. It can be seen that all figures suggest that
our SGN distribution offers a superior fit for each variable. Specifically, Figure 5 highlights
the notable advantage of the SGNmodel in accurately capturing the sharp-peaked charac-
teristics of male data for the BMI variable. Furthermore, the QQ plots in Figure 6 suggest
that any lack-of-fit is most evident in the right-hand tail.

6. Discussion

In this paper, we develop two classes of goodness of fit tests for our SGN distribution based
on data transformation, as well as the parametric bootstrap procedures. The test statistics
are constructed based on the properties of the SGN family, and we investigate the main
properties of the test statistics in detail. Simulation results demonstrate that the proposed
test statistics effectively maintain the nominal significance level compared to the standard
edf-based tests based on the original sample, especially for moderate to large sample sizes.
The power study shows that the GOF tests based on the transformation are generally more
powerful than the classical ones. Finally, a real example is given for an illustrative purpose.
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Figure 6. QQ−plots of two variables from the AIS data set for SGN fit: (a) Weight on female; (b) Weight
on male; (c) BMI on female; (d) BMI on male.

An important issue for further research involves comparing the simulated performance
of our SGNmodel with other published SGNmodels ([7,10]) when considering goodness
of fit tests. However, it’s important to note that the goodness of fit tests presented in our
paper rely on unique properties of our SGN, such as the mixed gamma transformation.
Directly applying thesemethods to existing SGNdistributionsmay pose certain challenges.
It would be interesting to explore more general methods for simultaneously evaluating the
goodness of fit across various types of SGN distributions.
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Table A1. Empirical powers of the GOF tests based on D, V ,W2,U2, A2, D∗, V∗, W2∗, U2∗, A2∗ and rn
statistics whenF is the SGN class; Significance level α = 5%; Sample size n = 20.

Transformation Original

Alternative D V W2 U2 A2 D∗ V∗ W2∗ U2∗ A2∗ rn

Sym. dist.
1 L(1, 2) 0.410 0.390 0.552 0.414 0.498 0.368 0.338 0.448 0.360 0.416 0.308
2 t4 0.688 0.666 0.806 0.732 0.786 0.786 0.708 0.836 0.790 0.820 0.490
3 C(1, 0.2) 0.602 0.664 0.632 0.662 0.632 0.516 0.598 0.568 0.610 0.532 0.720

Asym. dist.
4 W(2) 0.132 0.128 0.136 0.136 0.114 0.140 0.108 0.136 0.116 0.114 0.176
5 G(0.2, 1.4) 0.364 0.334 0.416 0.390 0.414 0.350 0.326 0.410 0.380 0.410 0.118
6 SN (4,−0.7) 0.510 0.430 0.596 0.462 0.582 0.250 0.244 0.348 0.268 0.312 0.498
7 Ga(3, 0.8) 0.440 0.420 0.432 0.424 0.436 0.432 0.418 0.428 0.422 0.428 0.434
8 Ga(2.2, 0.5) 0.444 0.450 0.434 0.450 0.434 0.415 0.446 0.413 0.444 0.420 0.432
9 χ2(9) 0.118 0.112 0.150 0.116 0.136 0.142 0.126 0.174 0.126 0.156 0.078

Bimo. dist.
10 MixN1 0.204 0.206 0.320 0.226 0.258 0.304 0.200 0.352 0.238 0.322 0.180
11 MixN2 0.175 0.183 0.238 0.199 0.226 0.217 0.188 0.227 0.206 0.227 0.196
12 MixN3 0.110 0.181 0.113 0.165 0.129 0.116 0.168 0.091 0.134 0.109 0.175

Table A2. Empirical powers of the GOF tests based on D, V ,W2,U2, A2, D∗, V∗, W2∗, U2∗, A2∗ and rn
statistics whenF is the SGN class; Significance level α = 5%; Sample size n = 50.

Transformation Original

Alternative D V W2 U2 A2 D∗ V∗ W2∗ U2∗ A2∗ rn

Sym. dist.
1 L(1, 2) 0.585 0.582 0.481 0.482 0.442 0.472 0.404 0.434 0.411 0.418 0.452
2 t4 0.978 0.970 0.990 0.980 0.986 0.976 0.978 0.988 0.984 0.982 0.746
3 C(1, 0.2) 0.868 0.898 0.888 0.860 0.888 0.864 0.874 0.866 0.852 0.880 0.928

Asym. dist.
4 W(2) 0.228 0.230 0.234 0.246 0.228 0.216 0.226 0.220 0.242 0.220 0.330
5 G(0.2, 1.4) 0.416 0.422 0.426 0.426 0.422 0.416 0.422 0.424 0.424 0.424 0.140
6 SN (4,−0.7) 0.926 0.910 0.952 0.920 0.956 0.614 0.566 0.712 0.596 0.694 0.936
7 Ga(3, 0.8) 0.445 0.458 0.466 0.470 0.444 0.446 0.438 0.458 0.452 0.430 0.464
8 Ga(2.2, 0.5) 0.486 0.458 0.502 0.478 0.510 0.484 0.456 0.474 0.480 0.460 0.460
9 χ2(9) 0.214 0.196 0.252 0.216 0.252 0.182 0.158 0.220 0.200 0.210 0.084

Bimo. dist.
10 MixN1 0.532 0.488 0.624 0.496 0.618 0.626 0.562 0.706 0.612 0.702 0.462
11 MixN2 0.464 0.430 0.508 0.459 0.547 0.422 0.367 0.511 0.395 0.482 0.481
12 MixN3 0.297 0.483 0.333 0.456 0.420 0.461 0.543 0.331 0.493 0.502 0.676

A.1 Proof of Proposition 2.2

Proof: As r �= 0,±1, it follows from Proposition 2.1 that

|X − μ|b
σ b

d= 2 · |W|bY ,
where 2Y ∼ Ga(1/b, 1/2). Then we have

T d= 1 − r
2

· Ga
(
1
b
, λ1

)
+ 1 + r

2
· Ga

(
1
b
, λ2

)
. (A1)

Similarly, the distribution of T can be obtained for r = 0 and r �= 0,±1.
�

We establish consistency of the ML estimators of all parameters of the SGN distribution.
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Table A3. Empirical powers of the GOF tests based on D, V ,W2,U2, A2, D∗, V∗, W2∗, U2∗, A2∗ and rn
statistics whenF is the SGN class; Significance level α = 5%; Sample size n = 100.

Transformation Original

Alternative D V W2 U2 A2 D∗ V∗ W2∗ U2∗ A2∗ rn

1 L(1, 2) 0.784 0.788 0.781 0.782 0.802 0.672 0.704 0.731 0.661 0.708 0.712
2 t4 0.980 0.972 0.992 0.983 0.988 0.979 0.98 0.922 0.986 0.985 0.821
3 C(1, 0.2) 0.888 0.912 0.911 0.892 0.926 0.884 0.895 0.892 0.874 0.912 0.928

Asym. dist.
4 W(2) 0.240 0.454 0.266 0.458 0.316 0.240 0.414 0.258 0.432 0.298 0.532
5 G(0.2, 1.4) 0.638 0.588 0.652 0.628 0.676 0.636 0.572 0.638 0.632 0.660 0.250
6 SN (4,−0.7) 0.921 0.915 0.826 0.831 0.862 0.721 0.651 0.810 0.644 0.781 0.624
7 Ga(3, 0.8) 0.486 0.466 0.484 0.462 0.498 0.480 0.434 0.472 0.452 0.494 0.504
8 Ga(2.2, 0.5) 0.526 0.492 0.546 0.494 0.576 0.516 0.490 0.504 0.492 0.480 0.506
9 χ2(9) 0.426 0.372 0.476 0.426 0.482 0.402 0.356 0.454 0.428 0.452 0.142

Bimo. dist.
10 MixN1 0.792 0.791 0.831 0.731 0.853 0.776 0.758 0.786 0.658 0.783 0.721
11 MixN2 0.777 0.768 0.812 0.796 0.843 0.677 0.617 0.774 0.619 0.755 0.819
12 MixN3 0.692 0.821 0.674 0.786 0.808 0.850 0.891 0.777 0.873 0.923 0.978

Table A4. Empirical powers of the GOF tests based on D, V ,W2,U2, A2, D∗, V∗, W2∗, U2∗, A2∗ and rn
statistics whenF is the SGN class; Significance level α = 5%; Sample size n = 200.

Transformation Original

Alternative D V W2 U2 A2 D∗ V∗ W2∗ U2∗ A2∗ rn

1 L(1, 2) 0.884 0.888 0.884 0.882 0.891 0.782 0.784 0.811 0.861 0.858 0.812
2 t4 0.984 0.978 0.994 0.986 0.991 0.982 0.984 0.941 0.991 0.989 0.912
3 C(1, 0.2) 0.913 0.932 0.932 0.924 0.946 0.916 0.913 0.914 0.892 0.936 0.943

Asym. dist.
4 W(2) 0.504 0.754 0.614 0.806 0.686 0.486 0.672 0.558 0.716 0.606 0.834
5 G(0.2, 1.4) 0.884 0.838 0.860 0.870 0.862 0.878 0.838 0.854 0.864 0.850 0.376
6 SN (4,−0.7) 0.982 0.973 0.981 0.976 0.962 0.804 0.778 0.880 0.784 0.874 0.798
7 Ga(3, 0.8) 0.486 0.506 0.498 0.512 0.486 0.480 0.476 0.494 0.466 0.492 0.542
8 Ga(2.2, 0.5) 0.558 0.558 0.566 0.566 0.628 0.526 0.494 0.598 0.526 0.512 0.564
9 χ2(9) 0.634 0.570 0.678 0.640 0.692 0.600 0.556 0.662 0.644 0.678 0.170

Bimo. dist.
10 MixN1 0.892 0.894 0.911 0.894 0.916 0.876 0.880 0.886 0.858 0.883 0.891
11 MixN2 0.945 0.960 0.961 0.971 0.979 0.917 0.888 0.959 0.894 0.951 0.987
12 MixN3 0.985 0.991 0.963 0.985 0.995 0.998 0.998 0.993 0.998 1.000 1.000

A.2 Proof of Theorem 2.1

To investigate the consistency of the ML estimators for the SGN distribution, the following Lemma
given in [35] is needed.

Lemma A.1 ([35]): Let H a be the family of all unimodal probability densities with mode at a ∈ R.
Any sequence of ML estimates for H a is strongly consistent for each f ∈ H a fulfilling

(i)
∫
f (x) ln |x − a| dx > −∞ and,

(ii)
∫
f (x) ln f (x) dx > −∞.

The support of fSGN(x; θ) is independent of θ for any θ ∈ �. Thus, the consistency of the ML
estimate θ̂MLE for the SGN distribution can be shown by verifying the conditions in Lemma A.1.
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Table A5. Empirical powers of the GOF tests based on D, V ,W2,U2, A2, D∗, V∗, W2∗, U2∗, A2∗ and rn
statistics whenF is the SGN class; Significance level α = 5%; Sample size n = 500.

Transformation Original

Alternative D V W2 U2 A2 D∗ V∗ W2∗ U2∗ A2∗ rn

Sym. dist.
1 L(1, 2) 0.984 0.978 0.994 0.986 0.991 0.982 0.984 0.941 0.991 0.989 0.912
2 t4 0.988 0.981 0.997 0.989 0.993 0.985 0.989 0.961 0.996 0.993 0.942
3 C(1, 0.2) 0.943 0.955 0.952 0.941 0.963 0.947 0.942 0.952 0.932 0.965 0.973

Asym. dist.
4 W(2) 0.946 0.994 0.980 0.998 0.992 0.934 0.964 0.950 0.980 0.954 0.998
5 G(0.2, 1.4) 0.986 0.984 0.984 0.992 0.984 0.984 0.982 0.978 0.992 0.976 0.566
6 SN (4,−0.7) 0.996 0.996 0.998 0.996 0.998 0.914 0.982 0.935 0.934 0.931 0.985
7 Ga(3, 0.8) 0.552 0.628 0.562 0.630 0.568 0.514 0.484 0.542 0.484 0.528 0.692
8 Ga(2.2, 0.5) 0.702 0.642 0.708 0.676 0.688 0.700 0.552 0.694 0.588 0.676 0.742
9 χ2(9) 0.952 0.936 0.962 0.944 0.970 0.946 0.936 0.958 0.944 0.966 0.454

Bimo. dist.
10 MixN1 0.986 0.980 0.996 0.988 0.996 0.962 0.936 0.978 0.954 0.976 0.974
11 MixN2 0.996 0.998 0.996 1.000 0.996 1.000 0.998 1.000 0.996 1.000 1.000
12 MixN3 0.996 0.994 0.996 0.986 0.996 0.958 0.984 0.956 0.986 0.959 0.997

Specifically, we need to check the following two equations:

Eθ

[
ln fSGN(X; θ)

]
> −∞ (A2)

and

Eθ [ln |X − μ|] > −∞, (A3)

for any θ ∈ �.
LetX ∼ SGN(μ, σ , r, b), we haveG = |X−μ|b

2σ b[1+r·sign(x−μ)]b) ∼ Ga(1/b, 1) fromEquation (3). Thus,
condition (A1) is easily verified for any θ ∈ �.

Next, we check condition (A2). Note that∫
fSGN(x;μ, σ , r, b) ln |x − μ| dx

= b
21+1/b	(1/b)σ

{∫ ∞

0
ln(y) exp

{
yb

−2σ b(1 + r)b

}
dy

+
∫ ∞

0
ln(y) exp

{
yb

−2σ b(1 − r)b

}
dy

}
.

Let z = y
σ(1+r) for the first integral, then we only need to prove∫ ∞

0
ln(z) exp

{
− zb

2

}
dz > −∞.

For any θ ∈ �, ∫ ∞

0
ln(z) exp

{
− zb

2

}
dz = 21/b

b2
	(1/b)[ln(2)+ ψ(1/b)] > −∞

can be easily justify, where ψ(·) denotes the digamma function. Thus condition (A3) is satisfied for
the SGN distribution.
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A.3 Proof of Theorem 2.2

We prove this theorem by computing the expectations in Equation (20). First, we present several
results necessary for computing the elements of the information matrix

E

[
|X − μ|k
σ k I[μ,+∞)(X)

]
= 2

k
b−1(1 + r)k+1

	(1/b)
	

(
k + 1
b

)
,

E

[
|X − μ|k
σ k I(−∞,μ)(X)

]
= 2

k
b−1(1 − r)k+1

	
( 1
b
) 	

(
k + 1
b

)
,

E

[
|X − μ|k
σ k ln

( |X − μ|
σ [1 + r · sign(X − μ)]

)
I[μ,+∞)(X)

]

=
2

k
b−1(1 + r)k+1

[
	
(
k+1
b

)
ln 2 + 	′

(
k+1
b

)]
	
( 1
b
)
b

,

E

[
|X − μ|k
σ k ln

( |X − μ|
σ [1 + r · sign(X − μ)]

)
I(−∞,μ)(X)

]

=
2

k
b−1(1 − r)k+1

[
	
(
k+1
b

)
ln 2 + 	′

(
k+1
b

)]
	
( 1
b
)
b

,

E

[
|X − μ|k
σ k

(
ln
( |X − μ|
σ [1 + r · sign(X − μ)]

))2
I[μ,+∞)(X)

]

=
2

k
b−1(1 + r)k+1

[
	
(
k+1
b

)
(ln 2)2 + 2	′

(
k+1
b

)
ln 2 + 	′′

(
k+1
b

)]
	
( 1
b
)
b2

,

E

[
|X − μ|k
σ k

(
ln
( |X − μ|
σ [1 + r · sign(X − μ)]

))2
I(−∞,μ)(X)

]

=
2

k
b−1(1 − r)k+1

[
	
(
k+1
b

)
(ln 2)2 + 2	′

(
k+1
b

)
ln 2 + 	′′

(
k+1
b

)]
	
( 1
b
)
b2

,

where IA(x)denotes the indicator function of the setA. Next, by computing the second-order deriva-
tives of the complete log-likelihood function in Equation (8) with respect to all parameters and
taking expectations, we arrive at the following components:

I11 = nb(b − 1)	(1 − 1/b)
22/b

(
1 − r2

)
σ 2	(1/b)

,

I13 = nb2

21/b
(
1 − r2

)
σ	(1/b)

,

I22 = nb
σ 2 ,

I24 = − n
σb

[ln 2 + 1 + ψ(1 + 1/b)] ,
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Table A6. Descriptive statistics for AIS dataset.

WT BMI

Statistic Female male Female male

Mean 67.3425 82.5235 21.9892 23.9036
SD 10.9154 12.4062 2.6400 2.7675
Skewness −0.1697 0.3844 0.6830 1.3906
Kurtosis 0.07110 0.3430 1.0930 2.8694

I33 = n(b + 1)
1 − r2

,

I44 = n
b2

+ 2n
b3

ln 2 + 2n
b3
ψ

(
1
b

)
+ n

b4
ψ ′
(
1
b

)
+ n

b3

[
(ln 2)2 + 2ψ(1 + 1/b) ln 2 + ψ ′

(
1 + 1

b

)
+ ψ2

(
1 + 1

b

)]
,

I12 = I14 = I23 = I34 = 0,

where ψ(·) and ψ ′(·) are defined in Equation (17).

Appendix 2. Additional simulations

A.4 Complementary results of Section 4.1

Appendix 2 provides the empirical sizes of the 11 tests in Section 3with significance levels of α = 0.1
and 0.01.

A.5 Sensitivity analysis

To explore the sensitivity of the tests to parameter estimates, we conducted a simulation study to
provide empirical evidence. We use the same simulation settings as described in Section 4.1, with
the only difference being the direct substitution of the true SGN model parameters into the test
statistics after generating the sample, instead of usingML estimates. Subsequently, we calculated the
empirical sizes of eleven tests across different sample sizes and distributions of data. The results,
obtained under the nominal significance level of 5%, are summarized in Figure A1.

Comparing the results in Figures 3 and A1, we observe no significant variation in the empirical
sizes between the tests based on the true parameter values and the tests based onML estimates. This
suggests that our tests are not overly sensitive to variations in parameter estimates. In other words,
the performances of tests remain stable within the allowable variance range of theML estimates. For
other nominal significance levels, similar conclusions are obtained, so they are not shown to save
space but can be provided upon request of the authors.



30 C. LIAN ET AL.

Figure A1. When true parameter values replace ML estimates in test statistics: Empirical sizes of the
GOF tests based on the D(◦), V(�),W2(+), U2(�), A2(•), rn(�), D∗(◦), V∗(�),W2∗(+), U2∗(�) and
A2∗(•) statistics when F is the SGN class and the nominal significance level is 5%. The left column of
each subplot displays D, V,W2, U2, A2 and rn, while the right column displays D∗, V∗,W2∗, U2∗ and A2∗.
(a) r = −0.7, b = 1.5. (b) r = −0.2, b = 1.5. (c) r = 0, b = 1.5. (d) r = −0.7, b = 2. (e) r = −0.2, b = 2.
(f ) r = 0, b = 2. (g) r = −0.7, b = 2.5. (h) r = −0.2, b = 2.5 and (i) r = 0, b = 2.5.
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Table A7. AIS data set for the SGN fit: Estimated p-values of parametric bootstrap goodness of fit tests
based on the proposed statistics calculated using B = 1000 bootstrap samples, along with parameter
estimates and standard errors (obtained through an information-based method) in parenthesis.

Variables WT BMI

Sex Female male Female male

Test statistics
D 0.610 0.299 0.995 0.255
V 0.598 0.319 0.981 0.156
W2 0.628 0.314 0.968 0.154
U2 0.571 0.286 0.964 0.131
A2 0.674 0.429 0.971 0.134
D∗ 0.517 0.654 0.993 0.446
V∗ 0.408 0.416 0.986 0.403
W2∗ 0.819 0.509 0.992 0.237
U2∗ 0.760 0.387 0.99 0.261
A2∗ 0.770 0.529 0.987 0.127
rn 0.713 0.350 0.679 0.123

Estimates
μ 70.0073(2.6598) 77.9383(3.1053) 20.8365(0.5367) 22.5201(0.1251)
σ 9.5802(2.1475) 12.1965(2.2285) 2.0729(0.5065) 1.4715(0.4368)
r −0.1552(0.1479) 0.2332(0.1475) 0.2900(0.1313) 0.3708(0.0686)
b 1.7620 (0.3660) 1.9972 (0.3890) 1.6243 (0.333) 1.2824 (0.2376)
�(̂θ) −379.7516 −399.9719 −235.3707 −236.9480

Notes: The log-likelihood (denoted as �(̂θ)) values are also presented for the four considered variables. Bold font is used to
highlight the lowest estimated p-values among the eleven test statistics.
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Table A8. Empirical size of goodness of fit tests based on the D, V ,W2,U2, A2, D∗, V∗, W2∗, U2∗, A2∗ and rn statistics when F is the SGN class and the nominal
significance level is 1%.

r&b r = −0.7 r = −0.2 r = 0

n 20 50 100 200 500 20 50 100 200 500 20 50 100 200 500

b = 1.5 D 0.014 0.014 0.005 0.008 0.006 0.016 0.004 0.006 0.008 0.014 0.012 0.006 0.008 0.006 0.012
V 0.014 0.012 0.005 0.016 0.008 0.008 0.004 0.012 0.010 0.012 0.012 0.010 0.010 0.014 0.014
W2 0.012 0.010 0.004 0.012 0.012 0.012 0.002 0.010 0.002 0.016 0.016 0.004 0.010 0.012 0.010
U2 0.016 0.016 0.007 0.014 0.008 0.012 0.002 0.018 0.010 0.016 0.014 0.016 0.012 0.010 0.016
A2 0.012 0.010 0.013 0.010 0.006 0.012 0.000 0.010 0.012 0.016 0.016 0.014 0.012 0.016 0.012
D∗ 0.016 0.004 0.013 0.012 0.008 0.004 0.004 0.006 0.002 0.008 0.004 0.008 0.006 0.010 0.008
V∗ 0.014 0.008 0.020 0.014 0.008 0.004 0.008 0.010 0.000 0.014 0.004 0.008 0.008 0.004 0.006
W2∗ 0.012 0.012 0.009 0.008 0.012 0.008 0.004 0.006 0.002 0.004 0.004 0.004 0.006 0.002 0.006
U2∗ 0.016 0.008 0.020 0.012 0.016 0.006 0.008 0.008 0.002 0.006 0.004 0.004 0.006 0.002 0.010
A2∗ 0.012 0.020 0.011 0.008 0.010 0.008 0.008 0.010 0.004 0.008 0.004 0.008 0.006 0.002 0.010
rn 0.002 0.003 0.010 0.014 0.006 0.002 0.007 0.000 0.006 0.001 0.000 0.000 0.007 0.004 0.010

b = 2 D 0.006 0.022 0.024 0.006 0.008 0.012 0.008 0.008 0.004 0.006 0.006 0.006 0.006 0.010 0.010
V 0.006 0.008 0.012 0.008 0.016 0.008 0.014 0.018 0.004 0.004 0.012 0.014 0.008 0.006 0.014
W2 0.010 0.040 0.024 0.002 0.014 0.004 0.006 0.006 0.004 0.004 0.010 0.010 0.002 0.006 0.012
U2 0.006 0.016 0.018 0.004 0.016 0.010 0.010 0.012 0.006 0.004 0.010 0.014 0.006 0.004 0.014
A2 0.010 0.036 0.024 0.002 0.016 0.008 0.006 0.004 0.002 0.006 0.008 0.004 0.006 0.008 0.014
D∗ 0.010 0.028 0.024 0.008 0.014 0.008 0.006 0.000 0.002 0.006 0.002 0.006 0.008 0.002 0.006
V2∗ 0.004 0.008 0.018 0.008 0.016 0.012 0.008 0.002 0.008 0.010 0.004 0.002 0.004 0.004 0.008
W2∗ 0.018 0.042 0.024 0.004 0.014 0.008 0.000 0.000 0.006 0.010 0.000 0.002 0.002 0.004 0.014
U2∗ 0.006 0.016 0.022 0.004 0.016 0.008 0.004 0.000 0.008 0.010 0.000 0.004 0.002 0.004 0.014
A2∗ 0.012 0.044 0.024 0.004 0.018 0.006 0.000 0.000 0.006 0.008 0.000 0.002 0.002 0.002 0.018
rn 0.006 0.008 0.006 0.002 0.006 0.002 0.000 0.002 0.008 0.008 0.000 0.002 0.002 0.004 0.010

b = 2.5 D 0.014 0.010 0.020 0.004 0.018 0.010 0.012 0.010 0.008 0.004 0.006 0.010 0.014 0.004 0.004
V 0.010 0.010 0.020 0.010 0.016 0.010 0.014 0.014 0.008 0.014 0.006 0.004 0.018 0.006 0.004
W2 0.012 0.018 0.020 0.012 0.010 0.012 0.008 0.012 0.004 0.006 0.008 0.008 0.012 0.008 0.004
U2 0.008 0.014 0.016 0.014 0.010 0.008 0.010 0.010 0.008 0.006 0.010 0.008 0.018 0.012 0.006
A2 0.014 0.018 0.026 0.010 0.012 0.010 0.012 0.016 0.006 0.002 0.006 0.012 0.018 0.012 0.006
D∗ 0.016 0.016 0.022 0.004 0.014 0.010 0.000 0.010 0.008 0.010 0.004 0.008 0.006 0.004 0.002
V∗ 0.010 0.008 0.016 0.008 0.014 0.010 0.004 0.010 0.008 0.006 0.006 0.006 0.014 0.010 0.006
W2∗ 0.012 0.028 0.022 0.006 0.006 0.008 0.000 0.008 0.008 0.006 0.002 0.010 0.002 0.004 0.002
U2∗ 0.008 0.014 0.016 0.012 0.008 0.008 0.000 0.012 0.008 0.010 0.006 0.004 0.010 0.006 0.004
A2∗ 0.012 0.028 0.022 0.004 0.006 0.008 0.000 0.008 0.010 0.002 0.002 0.010 0.004 0.004 0.004
rn 0.012 0.014 0.008 0.010 0.010 0.012 0.002 0.006 0.004 0.008 0.008 0.002 0.002 0.008 0.004



JO
U
RN

A
L
O
F
STA

TISTIC
A
L
C
O
M
PU

TA
TIO

N
A
N
D
SIM

U
LA

TIO
N

33

Table A9. Empirical size of goodness of fit tests based on the D, V ,W2,U2, A2, D∗, V∗, W2∗, U2∗, A2∗ and rn statistics when F is the SGN class and the nominal
significance level is 10%.

r&b r = −0.7 r = −0.2 r = 0

n 20 50 100 200 500 20 50 100 200 500 20 50 100 200 500

b = 1.5 D 0.076 0.080 0.095 0.090 0.090 0.100 0.098 0.084 0.096 0.080 0.072 0.086 0.122 0.080 0.092
V 0.088 0.070 0.100 0.100 0.102 0.102 0.122 0.100 0.112 0.086 0.096 0.120 0.122 0.092 0.110
W2 0.080 0.064 0.085 0.096 0.092 0.094 0.104 0.090 0.086 0.086 0.096 0.084 0.082 0.082 0.102
U2 0.082 0.076 0.105 0.104 0.096 0.102 0.122 0.096 0.096 0.090 0.096 0.100 0.096 0.100 0.112
A2 0.086 0.078 0.098 0.106 0.088 0.102 0.100 0.086 0.106 0.088 0.104 0.104 0.084 0.080 0.094
D∗ 0.096 0.068 0.087 0.086 0.084 0.058 0.060 0.076 0.070 0.118 0.050 0.078 0.080 0.076 0.094
V∗ 0.078 0.064 0.102 0.094 0.094 0.070 0.072 0.078 0.092 0.102 0.058 0.068 0.090 0.090 0.090
W2∗ 0.084 0.084 0.098 0.082 0.082 0.058 0.054 0.060 0.080 0.096 0.052 0.052 0.076 0.054 0.078
U2∗ 0.074 0.086 0.113 0.094 0.084 0.062 0.062 0.066 0.072 0.098 0.058 0.062 0.076 0.066 0.074
A2∗ 0.080 0.074 0.093 0.092 0.080 0.058 0.058 0.066 0.084 0.106 0.050 0.056 0.076 0.082 0.090
rn 0.050 0.073 0.083 0.092 0.088 0.062 0.070 0.053 0.098 0.072 0.078 0.037 0.067 0.064 0.074

b = 2 D 0.058 0.088 0.074 0.076 0.102 0.068 0.072 0.078 0.084 0.084 0.072 0.086 0.122 0.080 0.092
V 0.088 0.080 0.098 0.102 0.092 0.070 0.098 0.086 0.076 0.108 0.096 0.120 0.122 0.092 0.110
W2 0.072 0.090 0.076 0.048 0.100 0.062 0.074 0.080 0.066 0.078 0.096 0.084 0.082 0.082 0.102
U2 0.094 0.088 0.082 0.070 0.090 0.072 0.096 0.104 0.084 0.086 0.096 0.100 0.096 0.100 0.112
A2 0.082 0.096 0.068 0.056 0.090 0.068 0.072 0.078 0.076 0.088 0.104 0.104 0.084 0.080 0.094
D∗ 0.104 0.094 0.058 0.064 0.104 0.062 0.038 0.058 0.050 0.116 0.050 0.078 0.080 0.076 0.094
V∗ 0.092 0.084 0.086 0.076 0.094 0.066 0.054 0.084 0.070 0.100 0.058 0.068 0.090 0.090 0.090
W2∗ 0.072 0.080 0.054 0.052 0.076 0.056 0.034 0.050 0.064 0.092 0.052 0.052 0.076 0.054 0.078
U2∗ 0.082 0.078 0.070 0.082 0.080 0.060 0.048 0.078 0.076 0.094 0.058 0.062 0.076 0.066 0.074
A2∗ 0.076 0.078 0.052 0.048 0.080 0.056 0.032 0.058 0.058 0.076 0.050 0.056 0.076 0.082 0.090
rn 0.092 0.064 0.068 0.076 0.090 0.048 0.046 0.068 0.082 0.082 0.078 0.037 0.067 0.064 0.074

b = 2.5 D 0.076 0.084 0.088 0.086 0.074 0.082 0.082 0.086 0.082 0.094 0.094 0.084 0.112 0.082 0.068
V 0.076 0.090 0.100 0.078 0.086 0.086 0.074 0.096 0.088 0.106 0.098 0.104 0.124 0.100 0.088
W2 0.086 0.078 0.080 0.064 0.068 0.076 0.084 0.086 0.066 0.082 0.104 0.084 0.092 0.096 0.078
U2 0.092 0.082 0.094 0.084 0.080 0.078 0.084 0.090 0.074 0.102 0.102 0.094 0.116 0.106 0.080
A2 0.082 0.084 0.082 0.084 0.076 0.066 0.102 0.102 0.064 0.094 0.104 0.072 0.100 0.098 0.080
D∗ 0.096 0.080 0.084 0.072 0.072 0.056 0.040 0.078 0.090 0.100 0.080 0.082 0.080 0.076 0.078
V∗ 0.074 0.088 0.088 0.086 0.078 0.070 0.042 0.070 0.090 0.100 0.082 0.072 0.094 0.080 0.076
W2∗ 0.094 0.074 0.072 0.066 0.068 0.054 0.036 0.054 0.070 0.094 0.066 0.052 0.066 0.088 0.062
U2∗ 0.086 0.080 0.078 0.082 0.070 0.066 0.046 0.076 0.082 0.090 0.072 0.066 0.074 0.092 0.062
A2∗ 0.084 0.066 0.062 0.070 0.064 0.050 0.040 0.050 0.072 0.086 0.058 0.060 0.058 0.082 0.052
rn 0.064 0.084 0.072 0.096 0.080 0.064 0.050 0.074 0.074 0.086 0.086 0.068 0.074 0.072 0.068
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