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Abstract
Missing data is prevalent in many fields. Among all missing mechanisms, nonignor-
able missing data is more challenging for model identification. In this paper, we 
propose a semiparametric regression model estimation method with nonignorable 
missing responses. To be specific, we first construct a parametric model for the pro-
pensity score and apply the generalized method of moments to obtain the estimated 
propensity score. For nonignorable missing responses, based on the inverse prob-
ability weighting approach, we propose the penalized garrotized kernel machine 
method to flexibly depict the complex nonlinear relationships between the response 
and the predictors, allow for interactions between the predictors, and eliminate the 
redundant variables automatically. The cyclical coordinate descent algorithm is pro-
vided to solve the corresponding optimization problems. Numerical results and real 
data analysis indicate that our proposed method achieves better prediction perfor-
mance compared with the competing ones.

Keywords  Semiparametric model · Missing not at random · Reproducing Kernel 
Hilbert Space · Regularized estimation · Inverse probability weighting

Mathematics Subject Classification  62D10 · 62G05 · 62G08 · 62P10

1  Introduction

Missing data occurs frequently in various fields, including clinical trials, sur-
veys, and social sciences. For instance, in clinical trials, participants experiencing 
deterioration are more likely to drop out compared to those improving. Similarly, 
high-income individuals may be hesitant to disclose earnings in questionnaires. 
Handling missing data often requires some assumptions about the missing 

 *	 Yaohua Rong 
	 rongyaohua@bjut.edu.cn

1	 School of Mathematics, Statistics and Mechanics, Beijing University of Technology, 
Beijing 100124, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42952-024-00279-y&domain=pdf
http://orcid.org/0000-0002-5200-9723


1092	 Journal of the Korean Statistical Society (2024) 53:1091–1109

mechanism. The missing mechanism, as outlined by Little and Rubin (1976), 
plays a crucial role in statistical modeling. If the response probability of the study 
variable does not directly depend on the study variable, the missing mechanism 
is called missing at random (MAR). In contrast, the response probability of the 
study variable depends directly on the study variable, the missing mechanism is 
called nonignorable or missing not at random (MNAR) (Little and Rubin 2019). 
Compared to MAR case, the nonignorable missingness is associated with unob-
served values, which makes subsequent statistical inference more complicated. 
The missing mechanism should be taken into account in statistical inference to 
avoid estimation bias and prevent erroneous conclusions.

In recent years, various efficient methodologies have emerged to deal with 
missing data. For instance, imputation methods (Rubin and Schenker 1986; Chen 
and Van Keilegom 2013), likelihood methods (Lv and Li 2013), and robust esti-
mation techniques (Bianco et  al. 2011; Liu and Goldberg 2020) have primarily 
been employed to handle ignorable missing data. However, addressing nonignora-
ble missing data presents a more intricate challenge compared to ignorable cases. 
Recent advancements have introduced approaches tailored for MNAR data. For 
example, Morikawa et al. (2017) proposed a semiparametric maximum likelihood 
method for estimating parameters within the propensity score model. Shao and 
Wang (2022) devised bias-corrected generalized estimating equations, leveraging 
inverse propensity weighting to address nonignorable dropout. As highlighted by 
Wang et al. (2014), Zhao and Shao (2015), and Shao and Wang (2016), a criti-
cal aspect in handling nonignorable missing response data involves addressing 
identifiability issues. To tackle this challenge, the introduction of nonresponse 
instrument variables has been proposed (Wang et al. 2014). Despite the difficul-
ties, there is some literature considering statistical models with nonignorable 
missing responses, including but not limited to the following papers. Bahari et al. 
(2021) studied the general linear model based on the empirical likelihood ratio 
function with missing covariates or responses. Tang and Tang (2018) developed a 
penalized likelihood approach for the generalized partially nonlinear model with 
nonignorable missing responses. Zhang and Wang (2022) proposed a penalized 
empirical likelihood method for the partially linear quantile regression model 
with nonignorable missing responses. However, the methods used in these mod-
els rarely take into account the complex relationships between the covariates, 
especially for multidimensional data.

In view of the flexibility of nonparametric models and the easy interpretation of 
parametric models, semiparametric models have been widely used. Semiparamet-
ric models with missing responses at random are widely studied. For example, see 
Wang et al. (2004); Wang and Sun (2007); Bianco et al. (2011); Chen and Van Kei-
legom (2013), among others. However, to capture the complex relationships between 
the covariates and the response, we would like the model to be flexible enough to 
account for the nonlinearity. Under such circumstances, kernel machine methods 
have become a popular method in recent years. For example, for the complete data, 
see Liu et  al. (2007); Chen et al. (2018); Rong et al. (2018); Zheng et al. (2021), 
among others. For missing data, Liu and Liu and Goldberg (2020) developed two 
new kernel machines to handle missing responses at random.
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Recently, many works have extended the regularized estimation methods to non-
parametric or semiparametric models. Actually, it is reasonable to assume that only 
a minority of covariates contribute to the response. Under the assumption of spar-
sity, many regularized methods built on the penalized least square regression or the 
likelihood function have been proposed to simultaneously estimate parameters and 
select important predictors. For example, see LASSO (Tibshirani 1996), SCAD 
(Fan and Li 2001), adaptive LASSO (Zou 2006), MCP (Zhang 2010) and others. As 
a nonparametric model estimating method, kernel machine method does not require 
predetermined function form. Compared to the general kernel machine, Rong 
et al. (2018) proposed a garrotized kernel machine method that allows for interac-
tions between covariates in nonlinearity, which is an efficient method for complete 
data. However, this is not applicable when the data contains missing values. To our 
knowledge, kernel machine methods in existing studies have rarely been applied to 
the semiparametric models with nonignorable missing responses. Therefore, it is 
desirable to design a novel method that can concurrently perform parameter esti-
mation and select important predictors in nonlinearity with nonignorable missing 
responses.

The main contributions of this paper are as follows. Compare with the work of 
Rong et al. (2018), we address the problem of estimating the semiparametric model 
in scenarios where the response is missing, yet the covariates remain observable, 
and the mechanism for missing data is nonignorable. Of particular significance is 
our proposal for a two-step estimation approach aimed at modeling the semipara-
metric model with nonignorable missing responses. In the first step, we impose a 
parametric model and utilize the generalized method of moments (GMM) (Hansen 
1982) to estimate the propensity score model. We employ nonresponse instrument 
variables to address the identifiability problem, extending the approach proposed by 
Wang et  al. (2014) to other models. In the second step, recognizing the complex 
relationships among variables and the presence of redundant variables in the model, 
we develop a novel penalized garrotized kernel machine method capable of handling 
nonignorable missing responses within the semiparametric model framework. We 
construct a penalized objective function that integrates missing responses using the 
inverse probability weighting approach, thereby ensuring improved prediction accu-
racy by eliminating redundant variables. Additionally, we design an effective cycli-
cal coordinate descent algorithm to solve the corresponding optimization problem.

The rest of the paper is organized as follows. In Sect. 2, we propose the penalized 
garrotized kernel machine method with nonignorable missing responses (NMGKM). 
To be specific, we describe the model formulation and discuss the identifiability of 
the propensity score model and introduce the nonresponse instrument approach to 
estimate the propensity score model of missing data under MNAR. Then, by inverse 
probability weighting, we construct an penalty objective function with missing 
responses. In Sect. 3, we propose an efficient algorithm for the solution of the pro-
posed method. Numerical studies are conducted to compare the performance of the 
proposed method with the existing ones in Sect. 4. In Sect. 5, we apply the proposed 
NMGKM method to analyse a real data example. Finally, we conclude the paper 
with a brief discussion in Sect. 6.
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2 � Methods

2.1 � Models with nonignorable missing responses

For subjects i = 1,… , n , let (Yi,Ri,Xi,Zi) be independent random samples from 
(y, r, x, z) , where y is the response variable subject to missingness, r is the response 
indicator of y ( r = 1 if y is observed and r = 0 otherwise), x = (X1,… ,XP)

T and 
z = (Z1,… , ZQ)

T are P- and Q-dimensional vectors of covariates that are fully 
observed. We consider the semiparametric relationship between the covariates x, z 
and the response y as

where � = (�1,… , �P)
T is a P-dimensional unknown parameter vector, f (⋅) is an 

unknown smooth function and � is the random error distributed with N(0, �2).
For the nonparametric component f (⋅) , we assume that it lies in the Reproducing 

Kernel Hilbert Space HK generated by a positive definite kernel function K(⋅, ⋅) . 
Generally, the positive definite kernel function is called the inner product kernel or 
Mercer kernel. According to Mercer’s theorem (Cristianini and Shawe-Taylor 2000), 
under some regularity conditions, the kernel function K(⋅, ⋅) implicitly determines a 
unique function space. For example, a popular Gaussian kernel function is 

K(z, z�) = exp

�
−
∑Q

q=1

�
Zq − Z�

q

�2

∕�

�
 , where 𝜌 > 0 is known as the bandwidth.

In this paper, we adopt the garrotized kernel K(g)(z, z�;�) proposed by Rong et al. 
(2018). Specifically, the garrotized kernel is defined as

where � = (�1,… , �Q)
T is an unknown vector with �q ≥ 0 for q = 1,… ,Q , and ◦ is 

called Hadamard product. Specifically, let A and B be m × n matrices, the Hadamard 
product of A and B is defined by [A◦B]ij = [A]ij[B]ij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n 
(Styan 1973). Actually, the common Mercer kernel is a special case of the garrotized 
kernel with �q = 1 for q = 1,… ,Q . On the other hand, we can also obtain the gar-
rotized version of the Gaussian kernel for the general case as 
K(g)(z, z�;�) = exp

�
−
∑Q

q=1
�q(Zq − Z�

q
)2
�
 , which is applied in this paper.

Compared with the common Mercer kernel, the garrotized kernel can better 
depict the complex relationship between the covariates and the response. In fact, 
�q reflects the marginal effect of covariate Zq on the response for q = 1,… ,Q . For 
example, �q = 0 implies that Zq has no prediction performance on the response, 
which indicates that the garrotized kernel machine method can be used to provide a 
variable selection scheme.

In this paper, we consider the situation where the missing mechanism 
�(x, z, y) = Pr(r = 1|y, x, z) is MNAR. The conditional probability Pr(r = 1|y, x, z) is 
called the propensity score of missingness (Rosenbaum and Rubin 1983). By the 

(1)y = x T � + f (z) + �,

K(g)
(
z, z�;�

)
= K(g)

(
�

1

2 ◦z, �
1

2 ◦z�
)
,
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identification condition proposed by (Wang et al. 2014), we assume that the covari-
ates x and z can be partitioned into two components u and v , such that

Equation (2) indicates that the covariate v , which is called the nonresponse instru-
ment variable, is independent of the propensity score of missingness given y and u . 
Then, we assume that the parametric propensity score for a generalized linear model 
is

where � = (�0, �1
T , �2)

T is an m-dimensional unknown parameter vector to be esti-
mated, and Ψ(⋅) is a pre-specified function taking values at [0, 1] . Due to the exist-
ence of the instrument variable v , the dimension m ≤ 1 + P + Q . When �2 = 0 , 
the missing mechanism becomes MAR. As for Ψ(⋅) , popular models include the 
exponential tilting model with Ψ(s) =

[
1 + exp(s)

]−1 , the Logistic model with 
Ψ(s) = exp(s)∕

[
1 + exp(s)

]
 and complementary Log-log (cLog-log) model with 

Ψ(s) = 1 − exp
[
− exp(s)

]
 , the probit model with Ψ(⋅) being the standard normal dis-

tribution function.
Following the nonresponse instrument approach proposed by Wang et al. (2014), we 

apply the generalized method of moments to obtain an estimator of � . To be specific, 
construct following estimation functions

where s(x, z) is a known vector-valued function, and in this paper we take 
s(x, z) = (1, x, z) . Then, we can construct estimation equations based on the fact that 
E
[
g(x, z, y, r, �)

]
= 0 . Let

where G(�) is an L-dimensional vector with m-dimensional unknown parameters.
When L = m (indicating that the dimension of the instrument variable v is only one), 

we can directly estimate � by solving the equations

When L > m (indicating that the dimension of the instrument variable v is larger 
than one), the estimation Eq. (3) are over identified. Thus, we employ the two-step 
GMM to estimate � . Specifically, the first-step generalized moment estimator of � is

(2)Pr(r = 1|y, x, z) = Pr(r = 1|y, u, v) = Pr(r = 1|y, u).

�(y,u;�) = P(r = 1|y, u;�) = Ψ(�0 + �
1

T u + �2 y),

g(x, z, y, r, �) = s(x, z)

[
r

�(y,u;�)
− 1

]
,

G(�) =
1

n

n∑

i=1

g(Xi,Zi, Yi,Ri, �),

(3)G(�) = 0.

�̂(1) = argmin
�∈Γ

G(�) T G(�),
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where Γ is the parameter space of � . Let Ŵ𝛾
 be the (1 + P + Q) × (1 + P + Q) matrix 

with (l, l� ) th element being 1∕n
∑n

i=1
gl(Xi,Zi, Yi,Ri, �̂

(1))gl� (Xi,Zi, Yi,Ri, �̂
(1)) , where 

gl(⋅) is the lth element of the vector g(⋅) . Then, the second-step generalized moment 
estimator of � is

2.2 � Loss function for NMGKM

To estimate the unknown parameters as well as the nonparametric component for 
model (1), we construct the loss function. In contrast to the work of Rong et  al. 
(2018), the objective function needs to be constructed based on inverse probabil-
ity weighting since the response is missing. In this paper, the following penalized 
objective function is constructed as follows

where �i = �(Yi,Ui;�) is the propensity score of missingness for the ith subject, 
‖ ⋅ ‖1 denotes the L 1-norm and ‖ ⋅ ‖H

K(g)
 denotes the functional norm in the space 

HK(g) generated by the garrotized kernel. The first term in (4) is the quadratic loss 
weighted by the inverse probability of missingness. The inverse probability weight-
ing method is used to avoid estimation bias due to missing data. The non-negative 
tuning parameters �1, �2 and �3 strike a balance between the complexity and the 
goodness of fit of the model. The L 1-norm penalty on � and � can obtain sparse esti-
mation, which implements variable selection on x and z . The functional norm pen-
alty on f (⋅) controls the complexity and smoothness of the nonparametric 
component.

By the representer theorem (Kimeldorf and Wahba 1971), the nonparametric 
component f (⋅) that minimizes the loss function (4) can be written as

where � = (�1,… , �n)
T . Let Y = (Y1,… , Yn)

T ,X = (X
1
,… ,Xn)

T , W = 
diag(Ri∕�i) , A = W1∕2 and K(�) be an n × n Gram matrix with (i, j)th element being 
K(g)(Zi,Zj;�) . Then minimizing the loss function (4) is equivalent to minimizing

Together with the non-negative constraints on �q , the estimation for model (1) can 
be obtained by solving the following optimization problem

�̂ = argmin
�∈Γ

G(�) T Ŵ−1
𝛾
G(�).

(4)

h(f , �, �) =
1

2n

n�

i=1

Ri

�i
[Yi − Xi

T � − f (Zi)]
2 + �1‖�‖1 + �2‖�‖1 +

1

2
�3‖f‖2H

K(g)
,

f (z) =

n∑

i=1

�iK
(g)
(
z,Zi;�

)
,

(5)

h(�, �, �) =
1

2n
‖A[Y − X� − K(�)�]‖2 + �1‖�‖1 + �2‖�‖1 +

1

2
�3�

T K(�)�.
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The solution proposed above concerning the objective function (6) is referred to as the 
NMGKM method. For the nonignorable missing response, an instrument variable is 
used to identify the parameters in the propensity score model. The proposed estima-
tion method not only portrays the potential nonlinear relationship between the predic-
tors and the missing response and achieves the interaction between nonparametric pre-
dictors, but also automatically removes the redundant variables in the parametric and 
nonparametric components, thus improving the prediction performance of the model.

3 � Algorithm

The proposed NMGKM method is estimated by solving the optimization problem 
(6). In practice, the propensity score of missingness �i is usually unknown and needs 
to be estimated. Therefore, this paper proposes a two-step estimation scheme. For 
the unknown propensity score of missingness �i in the objective function h(�, �, �) , 
we plug-in their estimates 𝜋̂i = 𝜋(Yi,Ui;𝜸̂) , where 𝜸̂ is obtained by GMM, and denote 
the corresponding matrix W,A by Ŵ, Â . Once the missing probability �i is obtained, 
then the cyclic coordinate descent algorithm (Friedman et al. 2010) is proposed to 
solve the unknown parameters (�, �, �) in optimization problem (6) with fixed tun-
ing parameters � = (�1, �2, �3) . Furthermore, the validation procedure is introduced 
for the selection of the tuning parameters.

3.1 � Estimation for NMGKM

By plugging 𝜋̂i in the objective function (5) and fixed tuning parameters, we obtain 
the unknown parameters (�, �, �) by the following cyclical coordinate descent algo-
rithm. Specifically, we first give initial values (�(0), �(0), �(0)) . Then successively 
update the parameters one at a time by the cyclically coordinate descent algorithm.

∙ Given � = �(t−1) and � = �(t−1) , update � by solving

which is equivalent to solving

where Y∗ = ÂY − ÂK(𝜹(t−1))𝜶(t−1) and X∗ = ÂX . The optimization (7) can be solved 
by LASSO regression and we denote the updated value for � by �(t).

(6)
min
�,�,�

h(�, �, �),

s.t. �q ≥ 0, q = 1,… ,Q.

𝜷
(t)

= argmin
𝜷

1

2n
‖Â[Y − X𝜷 − K(𝜹(t−1))𝜶(t−1)]‖2 + �1‖𝜷‖1

+ �2‖𝜹(t−1)‖1 +
�3

2
(𝜶(t−1)) T K(𝜹(t−1))𝜶(t−1),

(7)𝜷
(t)

= argmin
𝜷

1

2n
‖Y∗ − X∗𝜷‖2 + �1‖𝜷‖1,
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∙ Given � = � (t) and � = �(t−1) , update � by solving

which is equivalent to solving

Noting that the objective function in (8) is a quadratic function of � , take the first 
derivative of (8) with respect to � and obtain the updated �(t) by solving the linear 
equations

When the coefficient matrix of � on the left-hand side of (9) is singular, a diagonal 
matrix with the element being 10−5 is added to make it invertible.

∙ Given � = � (t) and � = �(t) , update � by minimizing

To update � , we take the cyclic coordinate descent method one at a time. Specifi-
cally, to estimate �s , we fix � = � (t),� = �(t) and �q = �(t−1)

q
, q = 1,… ,Q, q ≠ s . 

Then minimize

which is a nonlinear optimization problem of �s . The univariate nonlinear con-
strained optimization in R is applied to obtain the updated �(t)

s
.

The above algorithms can be briefly described in Algorithm 1.
Algorithm 1    Solve optimization problem (6) 

argmin
𝜶

1

2n
‖Â[Y − X𝜷(t) − K(𝜹(t−1))𝜶]‖2 + �1‖𝜷 (t)‖1 + �2‖𝜹(t−1)‖1 +

�3

2
𝜶 T K(𝜹(t−1))𝜶,

(8)𝜶̂(t) = argmin
𝜶

1

2n
‖Â[Y − X𝜷(t) − K(𝜹(t−1))𝜶]‖2 +

�3

2
𝜶 T K(𝜹(t−1))𝜶.

(9)[K T (𝜹(t−1))ŴK(𝜹(t−1)) + n�3K(𝜹
(t−1))]𝜶 = K(𝜹(t−1))Ŵ(Y − X𝜷 (t)).

argmin
𝜹

1

2n
‖Â[Y − X𝜷(t) − K(𝜹)𝜶(t)]‖2 + �1‖𝜷 (t)‖1 + �2‖𝜹‖1 +

�3

2
(𝜶(t)) T K(𝜹)𝜶(t).

(10)

1

2n
‖Â[Y − X𝜷(t) − K(�s;�

(t−1)
q

)𝜶(t)]‖2 + �2

Q�

q=1,q≠s

�(t−1)
q

+ �2�s +
�3

2
(𝜶(t)) T K(�s;�

(t−1)
q

)𝜶(t),
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3.2 � Selection of the tuning parameters and evaluation of the model performance

The validation method is applied to select the tuning parameters and evaluate the 
model performance. Cross-validation is often used for tuning parameter selection 
but can be computationally inconvenient. Instead, to select the optimal tuning 
parameters, the model performance is calculated on the validation dataset. To be 
specific, given a fixed set of the tuning parameters � , we estimate the proposed 
NMGKM method based on the training set. With the missing response, we exam-
ine the performance of the competing estimation methods on the validation set by 
the mean square prediction error (MSPE) as follows

For different values of the tuning parameters, a smaller MSPE on the validation set 
indicates the better choice of � . In practice, we set a large range of � for a rough 
search, constantly narrow the range based on the MSPE of the validation set, and 
eventually obtain a set of relatively reasonable values. With the chosen tuning 
parameters and the estimated NMGKM method, we can evaluate the prediction per-
formance of the model by MSPE on the test set.

4 � Simulation studies

In this section, we evaluate the finite sample performance of the proposed method 
under different scenarios. We compare the proposed method with the weighted-
complete-case kernel machines (WCC) method proposed by Liu and Liu and 
Goldberg (2020) and the linear model with nonignorable missing responses 
(LMN) proposed by Shao and Wang (2016). The WCC method mainly considered 
the estimation problem of approximating nonparametric functions with Gaussian 
kernel in MAR.

In all the following simulation settings, �i is independently distributed with the 
standard normal distribution N(0, 1), and Xi and Zi are generated independently 
from uniform distribution U(−1, 1) and U(0, 1), respectively. The indicator vari-
able r is generated from Bernoulli distribution with probability function being 
specified as a exponential tilting (ExpT) form

or a Logistic form

or a cLog-log form

MSPE =
1∑n

i=1
Ri

n�

i=1

Ri

�
Yi − Xi

T �̂ − f̂ (Zi)
�2
.

P(r = 1|y, u;�) = 1∕[1 + exp(�0 + �
1

T u + �2 y)],

P(r = 1|y, u;�) = exp(�0 + �
1

T u + �2 y)∕[1 + exp(�0 + �
1

T u + �2 y)],
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when �2 = 0 , the missing mechanism is MAR.
The prediction performances of the fitted models are measured using the 

MSPE and the average absolute Bias based on the test sets. The average absolute 
Bias with missing responses is defined as

4.1 � Comparison with WCC​

The WCC method focused on the estimation of the nonparametric model in MAR. 
To better highlight the advantages of the kernel function in the NMGKM method, 
we first consider the data from the nonparametric model as follows

We conduct the four settings (S1–S4) to generate data with missing responses for 
model (11), where QT denotes the true number of relevant covariates in z.

S1: Q = 5, QT = 5, u = (Z4, Z5) T , f (z) = cos(Z1) − 1.5Z2
2 + exp(−Z3)Z4 − 0.8 sin(Z5) cos(Z3) + 2Z1Z5.

S2: Q = 10, QT = 5, u = (Z6,… , Z10)
T , and f (z) is the same as S1. Thus, it 

implies that the fitted model contains 5 additional irrelevant variables in z.
S3: Q = 10, QT = 10, u = (Z6,… , Z10) T , f (z) = cos(Z1) − 1.5Z2

2 + exp(−Z3)Z4 − 0.8 sin(Z5) cos(Z3)

+ 2Z1Z5 + 0.9Z6 sin(Z7) − 0.8 cos(Z6)Z7 + 2Z8 sin(Z9) sin(Z10) − 1.5Z3
8 − Z8Z9 − 0.1 exp(Z10) cos(Z10).

S4: Q = 20, QT = 10, u = (Z11,… , Z20)
T , and f (z) is the same as S3. Thus, it 

implies that the fitted model contains 10 additional irrelevant variables in z.
The settings S1–S4 consider different complex forms with the interaction 

between the covariates in the nonparametric component. The settings S2 and S4 take 
into account the addition of redundant variables in the nonparametric component.

We consider the following missing mechanism in three categories
ExpT1: �0 = −4(log 3)∕3, �

1
= (2(log 3)∕15,… , 2(log 3)∕15) T , �2 = 0.

Logistic1: �0 = 0.85, �
1
= (−(log 5)∕5,… ,−(log 5)∕5) T , �2 = 0.

cLog-log1: �0 = 0.82, �
1
= (−0.08,… ,−0.08) T , �2 = 0.

For S1–S4, the observed percentages under each category are approximately 70% 
to 80%, 50% to 60%, 80% to 90%, respectively. For the NMGKM method and WCC 
method, we need validation sets to select tuning parameters and test sets to evaluate 
the prediction performance of the model. All results are based on the sample sizes 
n = 300 , 600 and 900, and the samples are divided into a training set, a validation 
set and a test set with equal sample size. With 100 simulation replications, we report 
the MSPE, Bias and the corresponding standard deviation(SD) for the NMGKM 
method and WCC method in Table 1.

P(r = 1|y,u;�) = 1 − exp[− exp(�0 + �
1

T u + �2 y)],

Bias =
1∑n

i=1
Ri

n�

i=1

Ri�Yi − Xi
T �̂ − f̂ (Zi)�.

(11)y = f (z) + �.
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Table 1   The average MSPE(SD) and Bias(SD) of 100 Monte Carlo simulations by the NMGKM method 
and the WCC method in nonparametric model

All entries in MSPE(SD) and Bias(SD) are the result of multiplying by 100
The bolded results in the table represent the MSPE and Bias of the proposed method respectively, which 
means better prediction performance in different settings

n Set (Q, QT) NMGKM WCC​

MSPE(SD) Bias (SD) MSPE (SD) Bias (SD)

ExpT1
 300 S1 (5, 5) 16.0 (7.56) 31.1 (7.88) 18.8 (6.07) 34.1 (5.89)

S2 (10, 5) 21.7 (10.3) 36.3 (9.25) 25.6 (6.01) 40.8 (5.23)
S3 (10, 10) 21.0 (7.37) 36.2 (6.44) 23.5 (6.61) 38.7 (5.94)
S4 (20, 10) 28.8 (10.2) 42.4 (8.03) 31.9 (7.13) 45.6 (5.79)

 600 S1  (5, 5) 7.57 (3.46) 21.3 (4.86) 9.98 (3.79) 24.7 (4.45)
S2 (10, 5) 10.2 (3.85) 24.7 (4.88) 13.6 (3.41) 29.0 (3.80)
S3 (10, 10) 15.0 (5.99) 30.2 (6.09) 15.9 (3.57) 31.4 (3.80)
S4  (20, 10) 23.3 (7.43) 38.1 (5.99) 25.9 (4.43) 40.8 (3.67)

 900 S1 (5, 5) 6.10 (2.09) 19.2 (3.41) 7.92 (1.73) 21.7 (2.62)
S2 (10, 5) 8.77 (2.69) 23.0 (3.86) 12.2 (2.71) 27.6 (3.00)
S3 (10, 10) 10.7 (2.83) 25.5 (3.58) 13.0 (2.81) 28.2 (3.10)
S4 (20, 10) 12.6 (3.45) 27.8 (3.85) 17.8 (3.31) 33.5 (3.25)

Logistic1
 300 S1 (5, 5) 19.7 (9.66) 34.5 (8.78) 26.7 (9.29) 41.1 (8.05)

S2 (10, 5) 25.0 (10.5) 39.5 (9.22) 28.5 (12.9) 42.2 (10.2)
S3 (10, 10) 25.2 (10.1) 39.6 (8.35) 25.8 (9.48) 40.2 (7.62)
S4 (20, 10) 34.5 (11.6) 46.9 (8.35) 37.7 (11.3) 49.4 (7.97)

 600 S1 (5, 5) 8.79 (4.78) 22.7 (5.91) 9.86 (3.93) 24.5 (4.89)
S2 (10, 5) 19.0 (7.71) 34.2 (7.36) 25.2 (4.84) 40.7 (4.02)
S3 (10, 10) 15.6 (4.70) 31.1 (4.77) 17.6 (4.56) 33.0 (4.40)
S4 (20, 10) 29.0 (10.3) 42.8 (8.12) 32.7 (6.61) 46.3 (5.33)

 900 S1 (5, 5) 7.71 (4.78) 21.3 (6.00) 6.85 (1.96) 20.4 (3.19)
S2 (10, 5) 11.0 (3.75) 25.9 (4.77) 13.7 (3.68) 29.2 (3.98)
S3  (10, 10) 13.1 (3.70) 28.2 (4.05) 15.4 (3.83) 30.9 (3.92)
S4 (20, 10) 21.5 (6.13) 36.8 (5.61) 24.0 (5.28) 39.1 (4.76)

cLog-log1
 300 S1  (5, 5) 15.2 (7.32) 30.3 (7.52) 13.0 (6.02) 28.1 (6.70)

S2 (10, 5) 20.6 (9.64) 35.5 (9.00) 21.0 (6.18) 36.4 (5.65)
S3 (10, 10) 20.3 (7.33) 35.5 (6.40) 26.1 (6.90) 40.7 (5.82)
S4 (20, 10) 28.2 (9.28) 42.1 (7.58) 25.7 (5.82) 40.5 (5.11)

 600 S1 (5, 5) 7.98 (5.42) 21.3 (6.41) 7.47 (2.94) 21.1 (3.92)
S2 (10, 5) 10.8 (4.27) 25.5 (5.22) 12.7 (2.95) 28.0 (3.44)
S3 (10, 10) 12.0 (4.43) 27.1 (4.80) 13.6 (3.11) 29.0 (3.57)
S4 (20, 10) 15.6 (4.45) 31.2 (4.59) 20.1 (3.44) 35.8 (3.21)

 900 S1 (5, 5) 6.11 (3.72) 19.0 (5.20) 5.53 (1.62) 18.3 (2.79)
S2  (10, 5) 8.63 (2.68) 22.8 (3.90) 10.7 (2.44) 25.8 (2.93)
S3 (10, 10) 10.2 (2.81) 24.9 (3.56) 11.8 (2.56) 26.9 (2.91)
S4  (20, 10) 13.2 (3.64) 28.5 (4.09) 17.0 (2.75) 32.7 (2.76)
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From Table 1, it can be seen that the NMGKM method has smaller average MSPE 
and Bias than that of the WCC method in the four settings. This may be because the 
garrotized kernel in the NMGKM method is more flexible than the Gaussian kernel, 
which allows all �q to be unequal. When irrelevant variables are added, as in S2 and 
S4, it can be seen that the average MSPE and Bias of the NMGKM method is sig-
nificantly smaller than the WCC method. The reason is that the NMGKM method 
can eliminate irrelevant variables to implement variable selection. And increasing 
the sample size n improves the accuracy of prediction as expected. In addition, the 
NMGKM method performs better if we know the relevant variables in the true set.

Since the proposed NMGKM method is applicable to the semiparametric model, 
we further compare the prediction performance of the two methods for the following 
semiparametric model

The missing categories are the same as ExpT1, Logistic1 and cLog-log1, and we 
consider the following simulation settings (S5-S8) with PT and QT being the true 
number of relevant variables in x and z , respectively.

S5: P = 1, Q = 5, PT = 1, QT = 5, � = 1, u = (Z3, Z4, Z5)
T , and f (z) is the 

same as S1.
S6: P = 5, Q = 10, PT = 1, QT = 5, � = (1, 0, 0, 0, 0) T , u = (X2,… ,X5, Z6,… , Z10)

T , and 
f (z) is the same as S1. Thus, it implies that the fitted model contains 4 additional 
irrelevant variables in x and 5 additional irrelevant variables in z.

S7: P = 2, Q = 10, PT = 2, QT = 10, � = (1, 1) T , u = (Z5,… , Z10)
T , and 

f (z) is the same as S3.
S8: P = 5, Q = 20, PT = 2, QT = 10, � = (1, 1, 0, 0, 0) T , u = (X3,… ,X5, Z11,… , Z20)

T , 
and f (z) is the same as S3. Thus, it implies that the fitted model contains 3 addi-
tional irrelevant variables in x and 10 additional irrelevant variables in z.

For S5–S8, the observed percentages under each category are approximately 70% 
to 80%, 40% to 60%, 80% to 90%, respectively. Since the WCC method does not 
consider the linear part, we put all the covariates x and z into the nonparametric 
component. For 100 simulation repetitions, we report the MSPE(SD) and Bias(SD) 
for the NMGKM method and WCC method in Table 2.

From Table  2, we observe that the average MSPE and Bias of the NMGKM 
method is always smaller than the WCC method for the four simulation settings 
(S5–S8). In fact, the proposed NMGKM method can be applied to the semiparamet-
ric model, and the correct model hypothesis is conducive to improving the prediction 
accuracy of the model. Moreover, as the dimension of covariates and the number of 
irrelevant variables increase, the prediction performance of the NMGKM method 
is more excellent. When the missing proportion is high, it can be concluded that 
increasing the sample size can improve the prediction performance of the model.

4.2 � Comparison with the LMN

Shao and Wang (2016) considered the estimation of the mean of response in the 
linear model with the nonignorable missing response based on inverse probability 

y = x T � + f (z) + �.
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Table 2   The average MSPE(SD) and Bias(SD) of 100 Monte Carlo simulations by the NMGKM method 
and the WCC method in semiparametric model

All entries in MSPE (SD) and Bias (SD) are the result of multiplying by 100
The bolded results in the table represent the MSPE and Bias of the proposed method respectively, which 
means better prediction performance in different settings

n Set (P, Q) NMGKM WCC​

MSPE (SD) Bias (SD) MSPE (SD) Bias (SD)

ExpT1
 300 S5 (1, 5) 19.3 (9.90) 34.1 (8.93) 25.4 (18.2) 38.5 (12.2)

S6 (5, 10) 33.7 (9.31) 46.5 (7.26) 37.8 (11.0) 48.7 (7.21)
S7 (2, 10) 26.3 (10.7) 40.5 (8.33) 33.8 (11.3) 45.4 (7.41)
S8 (5, 20) 42.7 (12.4) 52.2 (8.24) 52.4 (15.9) 57.1 (9.07)

 600 S5 (1, 5) 8.05 (2.79) 22.1 (3.93) 12.1 (3.18) 26.9 (3.66)
S6 (5, 10) 20.3 (9.72) 35.1 (8.99) 26.6 (5.02) 40.6 (4.04)
S7 (2, 10) 15.2 (4.74) 30.8 (4.95) 22.8 (6.37) 37.1 (5.20)
S8 (5, 20) 21.3 (6.64) 36.4 (5.72) 37.6 (8.03) 48.3 (5.36)

 900 S5 (1, 5) 6.86 (3.01) 20.4 (3.92) 10.0 (2.34) 24.3 (2.89)
S6 (5, 10) 10.2 (2.89) 25.0 (3.92) 22.2 (4.36) 37.1 (3.76)
S7 (2, 10) 17.7 (9.38) 32.6 (8.74) 20.2 (4.02) 35.1 (3.50)
S8 (5, 20) 15.3 (3.75) 30.7 (3.93) 29.2 (5.46) 42.5 (4.06)

Logistic1
 300 S5 (1, 5) 25.8 (12.0) 39.9 (10.0) 26.2 (13.1) 39.7 (10.3)

S6 (5, 10) 37.6 (14.6) 48.7 (9.96) 45.0 (11.5) 53.4 (8.74)
S7 (2, 10) 37.5 (13.5) 49.0 (9.29) 45.2 (21.0) 52.7 (12.5)
S8 (5, 20) 64.2 (28.3) 63.8 (13.8) 73.4 (25.4) 67.7 (12.0)

 600 S5 (1, 5) 11.4 (6.51) 26.0 (7.21) 14.6 (4.14) 29.6 (4.26)
S6 (5, 10) 17.4 (6.33) 32.8 (6.13) 31.2 (6.66) 44.1 (4.87)
S7 (2, 10) 24.2 (11.6) 38.5 (9.37) 20.0 (7.61) 42.0 (5.56)
S8 (5, 20) 49.2 (14.7) 56.2 (8.70) 54.4 (18.7) 58.4 (9.50)

 900 S5 (1, 5) 7.54 (2.35) 21.4 (3.36) 12.1 (2.78) 26.9 (3.25)
S6 (5, 10) 32.3 (7.55) 45.9 (6.17) 35.6 (6.27) 47.6 (4.37)
S7 (2, 10) 16.1 (4.76) 16.1 (4.76) 26.0 (6.61) 39.7 (4.92)
S8  (5, 20) 40.4 (7.49) 51.1 (4.73) 42.6 (11.7) 51.5 (6.62)

cLog-log1
 300 S5  (1, 5) 16.6 (7.82) 31.7 (7.82) 19.8 (10.2) 34.5 (10.2)

S6 (5, 10) 32.9 (8.96) 45.9 (7.24) 36.2 (10.8) 47.5 (7.02)
S7  (2, 10) 23.5 (9.42) 38.2 (7.91) 33.1 (13.6) 44.9 (8.43)
S8 (5, 20) 37.9 (12.4) 49.0 (9.00) 51.3 (18.6) 56.4 (10.2)

 600 S5 (1, 5) 7.98 (3.40) 21.8 (4.69) 11.9 (3.41) 26.8 (3.77)
S6 (5, 10) 11.4 (3.22) 26.5 (4.12) 24.3 (4.36) 38.8 (3.68)
S7 (2, 10) 14.5 (5.54) 29.9 (5.60) 22.3 (5.23) 36.7 (4.42)
S8 (5, 20) 22.4 (7.44) 37.3 (6.26) 34.0 (6.40) 45.9 (4.42)

 900 S5 (1, 5) 6.22 (3.03) 19.2 (4.50) 9.37 (2.17) 23.6 (2.80)
S6 (5, 10) 11.4 (4.76) 26.3 (5.03) 21.0 (3.83) 36.1 (3.42)
S7 (2, 10) 11.3 (2.78) 26.4 (3.38) 18.7 (4.08) 33.6 (3.57)
S8 (5, 20) 20.4 (7.34) 35.4 (6.52) 27.6 (5.04) 41.3 (3.73)
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weighting. In this section, we compare the proposed NMGKM method with the 
LMN method.

We consider the following three missing cases
ExpT2: �0 = −0.8, �

1
= (−0.1, 0.1,… ,−0.1, 0.1,…) T , �2 = −0.4.

Logistic2: �0 = 0.4, �
1
= (−0.1,… ,−0.1) T , �2 = −0.2.

cLog-log2: �0 = 1.1, �
1
= (−0.5,… ,−0.5) T , �2 = 0.8.

We compare the prediction performance of the two methods in the following 
semiparametric model with different missing categories

We consider the same simulation settings as for S5–S8. For the above three missing 
categories, the propensity score depends on Yi , which represents three nonignorable 
missing data cases. For S5–S8, the observed percentages under each category are 
approximately 70% to 75%, 45% to 55%, 70% to 85%, respectively.

Since the LMN method does not consider the nonparametric component, we 
assume the linear relationship for all the covariates x and z . For each simulation, we 
consider n = 300 , 600 and 900. For the NMGKM method, the sample is divided into 
a training set, a validation set and a test set with equal sample size. For the LMN 
method, since there is no tuning parameter to be selected, two-thirds of the sample 
is divided into the training set for model estimation and the rest into the test set for 
prediction performance evaluation. With 100 simulation repetitions, we report the 
MSPE(SD) and Bias(SD) for the NMGKM method and LMN method in Table 3.

Table 3 shows the average MSPE (SD) and Bias (SD) of the proposed method 
and the LMN method for the four settings in three missing categories. The simu-
lation results clearly indicate that the proposed method almost always outperforms 
the LMN method in terms of MSPE and Bias. This is possible because the pro-
posed method correctly specifies the model, while the LMN method misspecifies the 
model when the data is generated from the semiparametric model. That is to say if 
there are complex nonlinear structures, the NMGKM method captures these effects 
better than the LMN method and hence gains higher prediction accuracy. Moreover, 
when the redundant variables are included in the model, we can significantly see 
that the average MSPE and Bias of the NMGKM method is smaller than the LMN 
method. Interestingly, the proposed method has better prediction performance even 
when the missing probability is large.

5 � Analysis of the real data sets

In this section, we compare the performance of our proposed NMGKM method, the 
WCC method and the LMN method on the AIDS clinical trial data from the AIDS 
Clinical Trials Group Study 175 (ACTG 175) (Hammer et al. 1996), which is availa-
ble in the R package speff2trial. ACTG 175 is a randomized clinical trial to compare 
monotherapy with zidovudine or didanosine with combination therapy with zidovu-
dine and didanosine or zidovudine and zalcitabine in adults infected with the human 

y = x T � + f (z) + �.
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Table 3   The average MSPE(SD) and Bias(SD) of 100 Monte Carlo simulations by the NMGKM method 
and the LMN method in semiparametric model

All entries in MSPE (SD) and Bias (SD) are the result of multiplying by 100
The bolded results in the table represent the MSPE and Bias of the proposed method respectively, which 
means better prediction performance in different settings

NMGKM LMN

n Set (P, Q) MSPE (SD) Bias (SD) MSPE (SD) Bias (SD)

ExpT2
 300 S5  (1, 5) 21.0 (9.67) 35.8 (8.74) 28.1 (18.0) 42.9 (14.1)

S6  (5, 10) 28.7 (9.42) 42.4 (7.86) 36.8 (17.3) 47.7 (10.5)
S7  (2, 10) 18.4 (7.24) 33.6 (6.51) 27.2 (9.52) 41.3 (7.24)
S8  (5, 20) 42.1 (9.63) 52.0 (6.65) 62.1 (20.6) 62.7 (10.6)

 600 S5  (1, 5) 19.4 (10.6) 19.1 (7.43) 23.7 (12.4) 34.2 (10.5)
S6  (5, 10) 13.9 (4.98) 29.2 (5.56) 16.3 (4.52) 32.6 (5.16)
S7  (2, 10) 16.0 (5.45) 31.6 (5.53) 19.8 (7.89) 35.4 (7.06)
S8  (5, 20) 51.7 (10.9) 55.2 (6.08) 53.3 (12.6) 57.7 (7.11)

 900 S5  (1, 5) 8.17 (3.69) 22.1 (4.77) 18.4 (6.38) 35.9 (7.13)
S6  (5, 10) 10.9 (4.18) 25.8 (4.89) 15.1 (4.46) 31.4 (5.10)
S7  (2, 10) 13.8 (3.67) 29.2 (4.13) 15.7 (4.76) 31.9 (5.21)
S8  (5, 20) 16.4 (4.77) 31.8 (4.46) 22.2 (5.55) 37.8 (5.00)

Logistic2
 300 S5  (1, 5) 22.9 (13.7) 22.9 (13.7) 30.5 (14.5) 43.9 (11.3)

S6  (5, 10) 24.9 (11.0) 39.3 (8.80) 54.2 (24.5) 57.9 (12.5)
S7  (2, 10) 27.1 (11.5) 41.5 (8.35) 41.4 (17.9) 50.9 (11.3)
S8  (5, 20) 48.0 (12.6) 54.9 (7.38) 93.5 (39.3) 76.9 (16.1)

 600 S5  (1, 5) 13.1 (7.07) 27.9 (6.85) 14.4 (3.94) 30.5 (4.74)
S6  (5, 10) 17.6 (7.44) 33.0 (7.02) 18.1 (4.68) 33.8 (4.42)
S7  (2, 10) 18.7 (6.64) 34.1 (6.17) 23.3 (8.85) 38.0 (7.17)
S8  (5, 20) 23.8 (6.80) 38.6 (5.45) 41.5 (14.0) 51.1 (8.61)

 900 S5  (1, 5) 9.86 (4.12) 24.5 (5.26) 12.9 (2.91) 28.0 (3.58)
S6  (5, 10) 17.8 (9.66) 32.9 (8.83) 20.3 (4.69) 36.0 (4.22)
S7  (2, 10) 15.8 (5.95) 31.2 (5.62) 16.8 (5.40) 32.4 (5.31)
S8  (5, 20) 21.0 (7.11) 36.3 (5.83) 24.6 (8.04) 39.2 (6.34)

cLog-log2
 300 S5  (1, 5) 29.2 (8.06) 43.4 (7.17) 30.0 (15.1) 46.6 (13.6)

S6  (5, 10) 33.0 (6.35) 45.9 (4.71) 34.9 (13.3) 46.5 (8.81)
S7  (2, 10) 35.3 (8.82) 47.0 (6.35) 34.8 (12.9) 46.7 (9.17)
S8  (5, 20) 48.7 (16.5) 55.6 (9.96) 65.3 (28.0) 63.9 (12.0)

 600 S5  (1, 5) 21.0 (10.1) 35.6 (10.0) 35.6 (13.7) 53.0 (12.0)
S6  (5, 10) 18.5 (6.23) 34.1 (5.72) 25.5 (9.15) 40.2 (7.26)
S7  (2, 10) 20.6 (6.66) 35.9 (5.65) 24.7 (8.79) 39.6 (7.32)
S8  (5, 20) 35.0 (10.7) 46.7 (7.29) 37.8 (12.7) 48.6 (8.40)

 900 S5  (1, 5) 10.7 (6.42) 24.8 (7.30) 38.0 (13.7) 55.4 (11.7)
S6  (5, 10) 15.3 (6.11) 30.5 (6.00) 17.3 (5.77) 33.7 (6.18)
S7  (2, 10) 18.5 (6.36) 33.8 (5.73) 21.9 (8.30) 37.6 (7.74)
S8  (5, 20) 33.9 (10.6) 46.1 (7.41) 47.6 (18.0) 54.5 (10.5)
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immunodeficiency virus whose CD4 cell counts is between 200 and 500 per cubic 
millimeter.

Among all the 2139 patients, We consider n = 532 patients with treatment zido-
vudine monotherapy. Let the CD4 counts at 96 ± 5 weeks be the response variable 
Y, and consider the following eight covariates: gender ( X1 ), CD4 counts at baseline 
(CD40, X2 ), CD4 counts at 20 ± 5 weeks (CD420, X3 ), age ( Z1 ), weight ( Z2 ), num-
ber of days of previously received antiretroviral therapy (preanti, Z3 ), CD8 counts 
at baseline (CD80, Z4 ), and CD8 counts at 20 ± 5 weeks (CD420, Z5 ). Due to death 
and dropout, some observations on the response Y are subject to missingness while 
the covariates are completely observed. The missing proportion is about 40% . Pre-
vious experiences from doctors indicated that HIV-infected patients with low CD4 
counts are more likely to drop out of the trial. Thus, the missing CD4 counts is 
nonignorable.

As an illustration, we consider the following semiparametric regres-
sion model y = x T � + f (z) , where the covariates x = (X1,X2,X3)

T and 
z = (Z1,… ,Z5)

T . To unify the scales roughly, all of the continuous covari-
ates are standardized. For the mechanism of missingness, we consider the model 
�(y,u;�) = 1∕

[
1 + exp(�0 + �

1
T u + �2 y)

]
 , where u = (X1,X2,X3,Z3,Z4,Z5)

T . 
Also, the age and weight are always observed and thus can be used as the instrument 
variable v . For the categorical variable gender, we introduce one dummy variable 
into the linear part of the model.

We randomly assign the 532 patients 100 times and follow the estimation and 
model evaluation procedure the same as those of the simulation section. The average 
MSPE and Bias for the 100 replications is given in Table 4.

From Table 4, we can clearly see that the NMGKM method has better predic-
tion performance. Compared to the WCC method, our garrotized kernel allows for 
interactions between the covariates. The NMGKM method has better prediction per-
formance compared to the linear model method, which suggests that the linear pro-
cedure is not flexible enough for capturing the complex relationship.

Table 4   Average MSPE(SD) 
and Bias(SD) of the three 
methods for 100 replications of 
the ACTG 175 data

All entries in MSPE(SD) and Bias(SD) are the result of multiplying 
by 100
The bolded results in the table represent the MSPE and Bias of the 
proposed method respectively, which means better prediction results 
in real data set

Methods Missing Mechanism MSPE(SD) Bias(SD)

NMGKM MNAR 64.8 (9.44) 63.6 (4.51)
WCC​ MAR 69.4 (8.88) 66.0 (4.40)
LMN MNAR 66.5 (10.6) 64.1 (5.40)
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6 � Conclusion

In this paper, we propose a penalized garrotized kernel machine method with non-
ignorable missing responses. Current researches mainly focus on ignorable miss-
ing responses. Dealing with nonignorable missing responses is a highly challeng-
ing problem, mainly because of the identifiability of the propensity score model. 
To deal with the issue, nonresponse instrument variables play a crucial role. In this 
paper, we construct a parametric propensity score model not involving instrument 
variables and apply the GMM approach to estimate the unknown parameters. Fur-
thermore, based on the penalized garrotized kernel machine, our proposed NMGKM 
method can not only capture the complex relationships between the covariates and 
the response and allow for possible interactions among covariates, but also remove 
the irrelevant predictors automatically. The ability for model selection reduces the 
model complexity so that our proposed method has the potential to achieve better 
prediction accuracy compared to the competing methods.

In the future, several issues need to be further investigated to construct complex 
relationship between the response and the covariates for nonignorable missing data. 
For example, we will explore the extension of the NMGKM method to other mod-
els, such as the quantile regression model. Besides, the mixed-effects model with 
longitudinal data also deserves further study for its wide application.

Acknowledgements  This work is supported by the National Natural Science Foundation of China 
(No.11701021, No.72371241, No.11971001), National Social Science Fund of China (No.23 & ZD127), 
National Statistical Science Research Project (No. 2022LZ22) and Science and Technology Program of 
Beijing Education Commission (No. KM202110005013).

Funding  National Natural Science Foundation of China (No. 11701021, No. 72371241, No.11971001), 
National Statistical Science Research Project (No. 2022LZ22), Science and Technology Program of 
Beijing Education Commission (No. KM202110005013), National Social Science Fund of China 
(No.23&ZD127).

Declarations 

Conflict of interest  No Conflict of interest nor Conflict of interest.

References

Bahari, F., Parsi, S., & Ganjali, M. (2021). Empirical likelihood inference in general linear model 
with missing values in response and covariates by MNAR mechanism. Statistical Papers, 62(2), 
591–622.

Bianco, A., Boente, G., González-Manteiga, W., & Pérez-González, A. (2011). Asymptotic behavior 
of robust estimators in partially linear models with missing responses: the effect of estimating the 
missing probability on the simplified marginal estimators. Test, 20(3), 524–548.

Chen, J., Zhang, C., Kosorok, M. R., & Liu, Y. (2018). Double sparsity kernel learning with automatic 
variable selection and data extraction. Statistics and Its Interface, 11(3), 401.

Chen, S. X., & Van Keilegom, I. (2013). Estimation in semiparametric models with missing data. Annals 
of the Institute of Statistical Mathematics, 65(4), 785–805.

Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Ker-
nel-based Learning Methods. Cambridge: Cambridge University Press.



1108	 Journal of the Korean Statistical Society (2024) 53:1091–1109

Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. 
Journal of the American Statistical Association, 96(456), 1348–1360.

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via 
coordinate descent. Journal of Statistical Software, 33(1), 1.

Hammer, S. M., Katzenstein, D. A., Hughes, M. D., Gundacker, H., Schooley, R. T., Haubrich, R. H., 
Henry, W. K., Lederman, M. M., Phair, J. P., & Niu, M. (1996). A trial comparing nucleoside mono-
therapy with combination therapy in HIV-infected adults with cd4 cell counts from 200 to 500 per 
cubic millimeter. New England Journal of Medicine, 335(15), 1081–1090.

Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Economet-
rica: Journal of the Econometric Society, 50(4), 1029–1054.

Kimeldorf, G., & Wahba, G. (1971). Some results on tchebycheffian spline functions. Journal of Math-
ematical Analysis and Applications, 33(1), 82–95.

Little, R. J., & Rubin, D. B. (2019). Statistical Analysis with Missing Data. Hoboken: Wiley.
Liu, D., Lin, X., & Ghosh, D. (2007). Semiparametric regression of multidimensional genetic pathway 

data: Least-squares kernel machines and linear mixed models. Biometrics, 63(4), 1079–1088.
Liu, T., & Goldberg, Y. (2020). Kernel machines with missing responses. Electronic Journal of Statistics, 

14(2), 3766–3820.
Lv, X., & Li, R. (2013). Smoothed empirical likelihood analysis of partially linear quantile regression 

models with missing response variables. AStA Advances in Statistical Analysis, 97, 317–347.
Morikawa, K., Kim, J. K., & Kano, Y. (2017). Semiparametric maximum likelihood estimation with data 

missing not at random. Canadian Journal of Statistics, 45(4), 393–409.
Rong, Y., Zhao, S. D., Zhu, J., Yuan, W., Cheng, W., & Li, Y. (2018). More accurate semiparametric 

regression in pharmacogenomics. Statistics and Its Interface, 11(4), 573.
Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational stud-

ies for causal effects. Biometrika, 70(1), 41–55.
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–592.
Rubin, D. B., & Schenker, N. (1986). Multiple imputation for interval estimation from simple random 

samples with ignorable nonresponse. Journal of the American statistical Association, 81(394), 
366–374.

Shao, J., & Wang, L. (2016). Semiparametric inverse propensity weighting for nonignorable missing data. 
Biometrika, 103(1), 175–187.

Shao, Y., & Wang, L. (2022). Generalized partial linear models with nonignorable dropouts. Metrika, 
85(2), 223–252.

Styan, G. P. (1973). Hadamard products and multivariate statistical analysis. Linear Algebra and Its 
Applications, 6, 217–240.

Tang, N., & Tang, L. (2018). Estimation and variable selection in generalized partially nonlinear models 
with nonignorable missing responses. Statistics and Its Interface, 11(1), 1–18.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical 
Society: Series B (Methodological), 58(1), 267–288.

Wang, Q., Linton, O., & Härdle, W. (2004). Semiparametric regression analysis with missing response at 
random. Journal of the American Statistical Association, 99(466), 334–345.

Wang, Q., & Sun, Z. (2007). Estimation in partially linear models with missing responses at random. 
Journal of Multivariate Analysis, 98(7), 1470–1493.

Wang, S., Shao, J., & Kim, J. K. (2014). An instrumental variable approach for identification and estima-
tion with nonignorable nonresponse. Statistica Sinica, 24, 1097–1116.

Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of 
Statistics, 38(2), 894–942.

Zhang, T., & Wang, L. (2022). Smoothed partially linear quantile regression with nonignorable missing 
response. Journal of the Korean Statistical Society, 51(2), 441–479.

Zhao, J., & Shao, J. (2015). Semiparametric pseudo-likelihoods in generalized linear models with non-
ignorable missing data. Journal of the American Statistical Association, 110(512), 1577–1590.

Zheng, X., Rong, Y., Liu, L., & Cheng, W. (2021). A more accurate estimation of semiparametric logistic 
regression. Mathematics, 9(19), 2376.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Associa-
tion, 101(476), 1418–1429.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.



1109Journal of the Korean Statistical Society (2024) 53:1091–1109	

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.


	Kernel machine in semiparametric regression with nonignorable missing responses
	Abstract
	1 Introduction
	2 Methods
	2.1 Models with nonignorable missing responses
	2.2 Loss function for NMGKM

	3 Algorithm
	3.1 Estimation for NMGKM
	3.2 Selection of the tuning parameters and evaluation of the model performance

	4 Simulation studies
	4.1 Comparison with WCC​
	4.2 Comparison with the LMN

	5 Analysis of the real data sets
	6 Conclusion
	Acknowledgements 
	References




